基于时变马尔可夫链的在线医疗服务医生排班决策研究
CSTR:
作者:
作者单位:

上海交通大学

作者简介:

通讯作者:

中图分类号:

A

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Study of Physician Scheduling for Online Medical Service System Based on Time-varying Markov Chains
Author:
Affiliation:

Shanghai Jiao Tong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    伴随线上医疗不断发展,医院面临线上线下联合医疗服务的模式中,对线上服务医生进行排班优化决策的问题。问题主要挑战在于时变的患者需求和线上医疗特殊的服务模式。针对线上医疗服务系统的医生排班决策问题,将线上医疗服务系统建模为资源共享队列,并采用时变马尔可夫链和均匀化方法对患者逗留时间、队列长度和医生加班时间进行建模和分析评估。基于以上系统评估的方法,提出了变邻域搜索的启发式算法对医生排班问题进行求解。基于合作医院的实际数据开展数值实验分析,验证了基于时变马尔可夫链建模的准确性,证明了所提出算法可以得到相对医院实际方案更好的排班结果,从而可以更加合理安排医生的工作时间,减少病人的逗留时间,控制系统中的病人数量,并具有优良的鲁棒性。研究对完善我国线上医疗服务系统的运作管理具有实际意义。

    Abstract:

    The continuous development of online medical has confronted hospitals with the problem of how to allocate physician resources in the joint online and offline medical service system, whose main challenges lie in the time-varying demand and the different service models of online medical. To address the physician scheduling problem in the online medical service system, the online medical service system is modeled as a processor-sharing queue, and time-varying Markov chain and uniformization methods are used to analyze and evaluate the patient sojourn time, queue length, and physician overtime time. Based on the uniformization method, a heuristic algorithm for variable-neighborhood search is proposed. Finally, numerical experimental analysis is carried out based on the actual data of the cooperative hospital, which verifies the accuracy of the time-varying Markov chain based modeling, and proves that the proposed algorithm can obtain better scheduling results relative to the actual scheduling of the hospital, so that it can more reasonably arrange the working time of the physicians, reduce the sojourn time of the patients, and control the number of patients in the system, and has excellent robustness. The study has practical significance for improving the operation and management of online medical service system in China.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-29
  • 最后修改日期:2024-08-28
  • 录用日期:2024-08-29
  • 在线发布日期: 2024-09-09
  • 出版日期:
文章二维码