欠驱动无人船路径跟踪: 一种有限时间正切漂角视线制导方法
CSTR:
作者:
作者单位:

1.大连海事大学;2.渤海大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金资助项目(U23A20680, 52271306); 国家高层次人才支持计划项目(SQ2022QB00329); 国防基础科研计划一般项目(JCKY2022410C013); 辽宁省“兴辽英才计划”领军人才项目(XLYC2202005); 大连市科技创新基金重大基础研究项目(2023JJ11CG009); 中央高校基本科研业务费专项资金项目(3132023501)


Path Following of Underactuated Marine Vehicles : A Finite-Time Sideslip-Tangent LOS Guidance Approach
Author:
Affiliation:

1.Dalian Maritime University;2.Bohai University

Fund Project:

the General Project of National Defense Basic Science Research Program of China (JCKY2022410C013)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海洋环境复杂多变, 为提升欠驱动无人船(Underactuated Marine Vehicle, UMV)的自主航行与故障应对能力, 本文提出了基于有限时间正切漂角视线制导的指令滤波路径跟踪控制策略. 在包括内部动力学未知、时变大漂角和执行器故障的复杂情况下, 该策略可使UMV在有限时间内遵循所需的路径. 首先, 构建了有限时间漂角观测器, 用于快速精准地估计时变大漂角; 随后, 引入有限时间正切漂角视线制导律, 不仅能提升制导性能, 还能有效避免因非光滑制导指令产生高频震荡导致UMV失稳; 此外, 通过采用有限时间指令滤波控制技术来降低计算负担, 并提出滤波补偿方案减少滤波误差; 最后, 基于径向基函数神经网络和有限时间理论, 设计了自适应有限时间容错路径跟踪控制器, 使得UMV的纵向速度和艏向角跟踪误差在有限时间内能够收敛到原点附近的小邻域. 仿真实验验证了所提出方案的有效性和优越性.

    Abstract:

    The marine environment is complex and variable. To enhance the autonomous navigation and fault response capabilities of underactuated marine vehicle (UMV), this paper proposes a finite-time sideslip-tangent line-of-sight (LOS) guidance-based command filtering path-following control scheme. This scheme enables UMV to follow the desired path within a finite time, even under complex conditions such as unknown internal dynamics, time-varying large sideslip, and actuator failures. Firstly, a finite-time sideslip observer is constructed to rapidly and accurately estimate the time-varying large sideslip. Subsequently, a finite-time sideslip-tangent LOS guidance law is introduced, which not only improves guidance performance but also effectively avoids high-frequency oscillations caused by non-smooth guidance commands, thus preventing instability in UMV. Additionally, finite-time command filtered control technology is employed to reduce computational burden, and a filtering compensation scheme is proposed to minimize filtering errors. Finally, based on radial basis function neural networks and finite-time theory, an adaptive finite-time fault-tolerant path-following controller is designed, which enables both surge velocity and heading angle tracking errors converge to a small neighborhood around the origin within a finite time. Simulation experiments verify the effectiveness and superiority of the proposed scheme.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-30
  • 最后修改日期:2024-11-01
  • 录用日期:2024-08-01
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码