基于LSTM的惯性里程计定位方法研究
CSTR:
作者:
作者单位:

1.北京理工大学;2.中国科学院自动化研究所

作者简介:

通讯作者:

中图分类号:

TP391.41;TP18

基金项目:


Research on Inertial Odometer positioning Method based on LSTM Network
Author:
Affiliation:

1.Beijing Institute of Technology;2.Chinese Academy of Sciences Institute of Automation

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决水下非结构化环境给水下精准定位带来的问题,本文提出一种基于LSTM的惯性里程计定位方法,用于水下作业机器人的定位。该网络在训练阶段,通过模拟噪声模型,在IMU的加速度和角速度数据中增添高斯白噪声实现数据增强,然后使用ResNet18提取机器人运动特征,同时,在网络的输入空间引入IMU的采样时间来加强鲁棒性。随后使用三通道LSTM将提取的特征映射到高维空间,并进行特征融合。最后,使用全连接层预测机器人的相对位移和旋转。在训练过程中,采取了相对损失函数和绝对损失函数相结合的方式来确保网络在短期和长期的定位精度。最后,进行了多次数据集和水池实验来验证方法的有效性。实验结果表明,该方法在大多数场景下都具有较好的定位性能,有着较强的鲁棒性。

    Abstract:

    In order to solve the problem of underwater precise positioning caused by underwater unstructured environment, this paper proposes an inertial odometer positioning method based on LSTM for the positioning of underwater working robots. In the training phase, the network adds Gaussian white noise to the acceleration and angular velocity data of the IMU by simulating the noise model to achieve data enhancement, and then uses ResNet18 to extract the motion characteristics of the robot. At the same time, the sampling time of the IMU is introduced in the input space of the network to enhance robustness. Then, three-channel LSTM is used to map the extracted features to high-dimensional space, and feature fusion is performed. Finally, the full connection layer is used to predict the relative displacement and rotation of the robot. In the training process, the relative loss function and the absolute loss function are combined to ensure the short-term and long-term positioning accuracy of the network. Finally, multiple data sets and pool experiments were carried out to verify the effectiveness of the method. The experimental results show that the method has good positioning performance and strong robustness in most scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-30
  • 最后修改日期:2024-09-19
  • 录用日期:2024-08-01
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码