无人船避碰操纵智能制导与运动控制一体化设计
CSTR:
作者:
作者单位:

大连海事大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Integrated intelligent guidance and motion control design for collision avoidance maneuvers of unmanned surface vehicles
Author:
Affiliation:

Dalian Maritime University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人船在拥挤水域中自主航行时,大量的其他船舶与静态障碍物、海洋环境扰动和无人船的不确定动态加剧了无人船的碰撞风险.针对此问题设计无人船智能避碰决策与航迹跟踪控制方案.首先,根据无人船航行水域中其他船舶和静态障碍物的数量评估拥挤程度,并将其引入现有的船舶碰撞风险度评估函数,合理评估拥挤水域中无人船的碰撞风险.然后,创建双向长短时记忆神经网络,根据由无人船在过去有限时域内的航迹跟踪控制信号和驶过航迹组成的输入序列估计在未来有限时域内基于无人船运动数学模型标称参数的无人船航迹预测误差.通过在线更新神经网络权重,可用估计的航迹预测误差修正由无人船的不确定动态和遭受的海洋环境扰动导致的航迹预测误差,实现具有自学习能力的无人船航迹智能预测.最后,基于模型预测控制思想,求解以最小化无人船剩余航行距离和碰撞风险为目标,以无人船动态、无人船与其他船舶和静态障碍物的安全距离为约束的优化问题,获得避碰操纵的期望航迹和航迹跟踪控制信号.仿真和仿真比较结果表明,在所设计的智能避碰决策与航迹跟踪控制方案下,无人船自主航行的实际距离更短,与其他船舶的碰撞风险更低.

    Abstract:

    When an unmanned surface vehicle (USV) navigates autonomously in congested waters, a large number of other vessels and static obstacles, ocean environment disturbances, and USV uncertain dynamics exacerbate the USV collision risks (CRs). For this problem, a USV intelligent collision avoidance (COLAV) decision-making and trajectory tracking control scheme is designed. Firstly, the congestion degree is assessed according to the numbers of other vessels and static obstacles in USV sailing waters, which is introduced into an existing CR index assessment function, such that the CRs of the USV in congested waters are assessed reasonably. Secondly, a bidirectional long short-term memory neural network (NN) is established to estimate the USV trajectory prediction errors in a future finite time domain based on the USV motion mathematical model nominal parameters according to input sequences consisting of the USV trajectory tracking control signals and the passed trajectory in a past finite time domain. The NN"s weights are updated online, such that the estimated USV trajectory prediction errors can be used to correct the USV trajectory prediction errors caused by ocean environment disturbances and USV uncertain dynamics, implementing the USV intelligent trajectory prediction with self-learning ability. Finally, based on the idea of model predictive control, we obtain the desired trajectory and control signals for USV COLAV maneuvers by solving the optimization problem whose objective is to minimize the USV remaining sailing distance and CR, constrained by the USV dynamics and the safe distances from the USV to other vessels and static obstacles. Simulation and simulation comparison results show that under the proposed intelligent COLAV decision-making and trajectory tracking control scheme, the USV actual sailing distance of its autonomous navigation is shorter and the CR of the USV is lower.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-31
  • 最后修改日期:2024-10-31
  • 录用日期:2024-10-12
  • 在线发布日期: 2024-10-14
  • 出版日期:
文章二维码