面向医学图像分割的双通道特征感知网络
CSTR:
作者:
作者单位:

1.江苏科技大学;2.发育与妇儿疾病四川省重点实验室

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


A Dual-Channel Feature Perception Network for Medical Image Segmentation
Author:
Affiliation:

Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卷积神经网络(CNN)在医学图像分析领域得到了广泛应用, 但受其固定感受野的局限性, 传统的CNN模型难以建立图像中的长距离依赖关系. Transformer通过自注意力机制能够建立图像全局视角下的信息依赖, 拥有更强的序列建模能力. 然而, Transformer难以捕获图像的局部细节特征. 为了解决上述问题, 提出一种基于CNN与Transformer的混合模型DC-TransNet, 用于医学图像分割. DC-TransNet采用双解码器结构建立图像局部和长距离依赖, 捕获局部和全局特征. 考虑到基于编码器-解码器结构的网络模型在不同深度提取到的特征图的大小不一致, 设计了两种特征感知注意力机制CFP和SFP, 合理分配局部和全局特征的权重. 在多个医学数据集上进行了实验, 结果表明DC-TransNet在2D医学图像单类别分割任务中取得了有竞争力的结果, mIoU与mDice等系数均得到显著提升.

    Abstract:

    Convolutional neural networks (CNN) have been widely used in the field of medical image analysis. However, due to the limitation of its fixed receptive field, the traditional CNN model makes it difficult to establish long-distance dependencies in images. Transformer can establish the information dependence in the global perspective of the image through the self-attention mechanism and has a stronger sequence modeling ability. However, Transformer makes it difficult to capture the local detailed features of images. To solve the above problems, a hybrid model DC-TransNet based on CNN and Transformer is proposed for medical image segmentation. DC-TransNet uses a dual-decoder structure to establish local and long-distance dependencies in the image and capture local and global features. Considering that the size of the feature maps extracted by the network model based on the encoder-decoder structure is inconsistent at different depths, we design two feature perception attention mechanisms, CFP and SFP, to reasonably allocate the weight of local and global features. Experiments are conducted on multiple medical datasets and the results show that DC-TransNet is effective in 2D medical images. Competitive results are achieved in single-category segmenta-tion tasks, and coefficients such as mIoU and mDice are significantly improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-02
  • 最后修改日期:2024-07-17
  • 录用日期:2024-07-24
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码