基于约束图的鲁棒半监督不相关岭回归聚类
CSTR:
作者:
作者单位:

华东交通大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Robust semi-supervised uncorrelated ridge regression clustering based on constraint graph
Author:
Affiliation:

east china jiaotong university

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    岭回归由于简单高效被用于处理各种机器学习任务,并取得令人称赞的结果。然而,当岭回归直接应用于聚类时很容易触发平凡解。为解决此问题,本文提出基于约束图的鲁棒不相关岭回归方法(Robust Uncorrelated ridge Regression with Constraint Graph,简称为RURCG)。首先,该方法利用广义不相关约束使岭回归嵌入了流形结构,保证其聚类时存在闭式解;其次,为避免异常数据对聚类的影响,对岭回归的误差项施加二值向量,该向量的元素具有明确的物理意义,若数据正常,则其值为1,否则为0;接着,对岭回归嵌入拉普拉斯构造以获取数据的局部几何结构,为使聚类结构更为充分,其中涉及的图矩阵包含了成对约束和标签信息;最后,运用迭代优化策略求解目标函数,在8个基准数据集上的仿真实验验证了所提方法的有效性。

    Abstract:

    Ridge regression is utilized to tackle various machine learning tasks due to its simplicity and efficiency, and achieves praiseworthy results. However, when ridge regression is directly applied in clustering it can easily lead to trivial solutions. To address this problem, this paper proposes Robust Uncorrelated ridge Regression with Constraint Graph abbreviated as RURCG. Firstly, the method utilizes the generalized uncorrelated constraints to make the ridge regression embedded in the manifold structure, which guarantees the existence of a closed-form solution for its clustering. Secondly, to avoid the impact of outlier data for clustering, a binary vector is imposed on the error term of the ridge regression. The element values of this vector contain a definite physical meaning, with its value being 1 if the data are normal, otherwise, the value being 0. Next, a Laplace construction is embedded in the ridge regression to obtain the local geometrical structure, which involves the graph matrix containing pairwise constraints and labeling information in order to make the clustering structure more adequate. Finally, an iterative optimization strategy is applied to solve the objective function, and simulation experiments on eight benchmark datasets verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-07
  • 最后修改日期:2024-07-17
  • 录用日期:2024-07-24
  • 在线发布日期: 2024-08-31
  • 出版日期:
文章二维码