基于结构分析与极限学习机的牵引传动系统多传感器故障实时联合诊断方法
CSTR:
作者:
作者单位:

1.湖南大学;2.湖南大学机械与运载工程学院;3.中南大学自动化学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

湖南省科技创新计划项目(2023RC1047, 2022RC1090),湖南省自然科学基金项目(2022JJ20076)


Real-time Joint Diagnosis Method of Multi Sensor Fault for Traction Drive System based on Structural Analysis and Extreme Learning Machine
Author:
Affiliation:

1.Hunan University;2.College of Mechanical and Vehicle Engineering, Hunan University;3.College of Automation, Central South University

Fund Project:

Science and Technology Innovation Program of Hunan Province (2023RC1047,2022RC1090), in part , Natural Science Foundation of Hunan Province (#2022JJ20076).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前牵引传动系统传感器故障诊断中存在的诊断对象单一、传感器信号间强耦合性未充分考虑可能导致的误报问题,提出了一种多传感器联合实时故障诊断方法。研究首先分析了基于现有传感器布局的可诊断生,并构建了可实现所有传感器故障可隔离的结构最小型超定方程集(MSOs)和故障特征矩阵。其次,基于每个MSOs对应的传感器信号集和相关系统机理知识,确定了数据驱动模型的输入输出信号、模型输入信号的阶次以及不同输入信号间的关联关系。接着,利用极限学习机(ELM)算法,基于历史正常数据样本建立每个MSOs的数据驱动模型,实现其输出值的有效估计,并生成残差序列,再结合故障特征矩阵实现不同传感器故障的有效检测与诊断。最后,采用采用半实物仿真与现场故障场景录波的虚实联合测试验证平台对所提诊断算法进行测试验证。验证结果表明,与现有方法相比,所提方法能实现牵引传动系统多传感器故障的快速检测与定位,具有良好的工程应用价值。

    Abstract:

    Aiming at the problem of possible false alarm caused by the single diagnosis targets and insufficient consideration of the strong coupling between sensor signals, a joint real-time diagnosis method of multi-sensor faults is proposed. The research begins by analyzing the diagnosability based on the existing sensor layout and constructs the minimum structured overdetermined equation set (MSOs) and fault characteristic matrix that can achieve isolation of all sensors faults. Secondly, based on the sensor signal sets corresponding to each MSO and relevant system mechanism knowledge, the input and output signals of the data-driven model, the order of model input signals, and the correlation between different input signals are determined. Subsequently, using the Extreme Learning Machine (ELM) algorithm, data-driven models for each MSO are established based on historical normal data samples, enabling effective estimation of their output values and generating residual sequences. By combining these with the fault characteristic matrices, effective detection and diagnosis of different sensor faults are achieved. Finally, a virtual and physical joint test verification platform, which employs semi-physical simulation and on-site fault scenario recording, is used to test and verify the proposed diagnostic algorithm. The verification results demonstrate that, compared to existing methods, the proposed method can achieve rapid detection and localization of multi-sensor faults in traction drive system, offering significant value for engineering applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-12
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-23
  • 在线发布日期: 2024-12-06
  • 出版日期:
文章二维码