安检场景的行人及携带物协同识别方法
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

TP391.7;TP391.4

基金项目:

年江苏省研究生科研与实践创新计划项目(SJCX24_0461)


Collaborative Recognition Method of Pedestrian and Carrying Objects in Security Screening Scenarios
Author:
Affiliation:

Nanjing University Of Information Science &technology

Fund Project:

Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX24_0461)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在进站安检智能化进程中,对于行人是否携带了行李物品的识别研究是必不可少的。针对在行人检测任务中,忽视了对其携带的物品一并进行检测,且在复杂场景中由于多尺度和遮挡导致误检和漏检等问题,提出了一种在安检场景的行人及携带物同步识别的方法。构造了一种易部署的轻量级深度学习网络模型PCD-MLNet检测行人及携带物目标。使用改进的HGNetV2作为模型的主干网络,提取不同尺度的输入特征。提出了一种可扩张的多分支残差模块DMRModule,结合大核卷积操作,增强行人及携带物特征提取的层次性和细节感知能力。使用EIoU作为检测网络的定位回归损失函数,提高模型对目标的定位能力。在创建的行人-携带物数据集实验中,PCD-MLNet取得了良好的性能,检测精度达到72.3%。对冗余通道剪枝之后,最终模型的参数量较基准模型下降了58.6%,视频推理速度提升35.0%。在仿真平台上的模拟安检实验也获得良好效果。

    Abstract:

    In the process of intelligentization of security checks, research on the recognition of whether pedestrians are carrying objects is essential. Aiming at pedestrian detection neglects to detect their carry-on together and leads to misdetection and omission in complex scenes due to multi-scale and occlusion, a method for simultaneous recognition of pedestrians and carry-on in security checks is proposed. An easy-to-deploy lightweight deep learning network model PCD-MLNet is proposed for detecting pedestrians and carrying object targets. The improved HGNetV2 is utilized as the backbone network of the model to extract input features. A dilated multi-branch residual module is proposed, which combines the large kernel convolution operation to enhance the hierarchical and detailed awareness of the pedestrian and the carrying objects feature extraction. The EIoU is a localization regression loss function for the detection network to improve the model"s ability to localize the target. In the created pedestrian-carrier dataset experiments, PCD-MLNet performs well, with a detection accuracy of 72.3%. After pruning the redundant channels, the number of parameters in the final model decreased by 58.6% compared to the baseline model, and the video inference speed increased by 34.7%., obtaining good results. The simulated security check experiments on the simulation platform also obtained good results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-14
  • 最后修改日期:2024-11-06
  • 录用日期:2024-11-10
  • 在线发布日期: 2024-11-21
  • 出版日期:
文章二维码