一种基于凸剖分知情采样的最优路径规划算法
DOI:
CSTR:
作者:
作者单位:

1.浙江工业大学信息工程学院;2.赛克思液压科技股份有限公司;3.浙江三锋实业股份有限公司;4.白俄罗斯国家科学院信息学问题联合研究所

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

国家重点研发计划“政府间国际科技创新合作”重点专项(2022YFE0121700);宁波市公益性研究计划重点项目(2023S018);金华市重大科技计划项目(2023-1-019).


An Optimal Path Planning Algorithm Based on Informed Sampling of Convex Dissection
Author:
Affiliation:

College of Information Engineering, Zhejiang University of Technology

Fund Project:

Key Special Project of Government-to-Government International Scientific and Technological Innovation Cooperation under the National Key Research and Development Program(2022YFE0121700);Key Project of Ningbo Municipal Public Welfare Research Program(2023S018);Major Science and Technology Plan Project of Jinhua City(2023-1-019).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于图搜索的路径规划算法难以在连续空间中找到最优路径和基于采样的路径算法路径生成效率低的问题,本文提出了一种基于凸剖分知情采样的最优路径规划算法(Informed Sampling of Convex Dissection, CDI-RRT*)。首先,该算法对静态地图进行凸剖分并建立拓扑图,在拓扑图的指引下使用A*算法生成初始路径并使用弹性带算法对其进行优化,从而获取初始局部最优路径;之后,该算法在拓扑图的指导下构建初始树,并结合剖分线约束与Informed-RRT*算法的知情集约束构建动态采样域,通过在动态采样域中随机采样来优化初始树,进而规划出最优路径。最后,本文将CDI-RRT*算法与目前先进的最优路径规划算法在仿真以及实际场景下进行实验对比。实验结果表明,CDI-RRT*算法在初始路径生成效率、最优路径的生成效率等核心指标上均优于对比算法,充分验证了该算法的可行性与有效性。

    Abstract:

    To address the difficulty of graph-based path planning algorithms in finding optimal paths in continuous spaces and the low efficiency of path generation in sampling-based path planning algorithms, this paper proposes an optimal path planning algorithm based on Informed Sampling of Convex Dissection (CDI-RRT*). The algorithm first performs a convex dissection of the static map and establishes a topological graph. Guided by this topological graph, the A* algorithm is used to generate an initial path, which is then optimized using the elastic band algorithm to obtain an initial locally optimal path. Subsequently, the algorithm constructs an initial tree under the guidance of the topological graph and integrates partition line constraints with the informed set constraints of the Informed-RRT* algorithm to create a dynamic sampling area. By randomly sampling within this dynamic sampling area to optimize the initial tree, the algorithm plans the optimal path. Finally, the CDI-RRT* algorithm is compared with current advanced optimal path planning algorithms through experiments in both simulation and real-world scenarios. The experimental results show that the CDI-RRT* algorithm outperforms the compared algorithms in key metrics such as initial path generation efficiency and optimal path generation efficiency, fully validating the feasibility and effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-11-05
  • 录用日期:2024-11-05
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码