基于渐进式感受野的轻量级图像超分辨率重建方法
CSTR:
作者:
作者单位:

1.中国矿业大学南湖校区信息与控制工程学院;2.中国矿业大学南湖校区计算机科学与技术学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Lightweight Image Super-Resolution Reconstruction Method Based on Progressive Receptive Field
Author:
Affiliation:

China University of Mining and Technology,School of Information and Control Engineering

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统轻量级图像超分辨重建方法通常仅依赖单一尺度的卷积来提取图像特征,简单地将浅层和深层特征聚合后进行图像重建.然而,这种做法忽略了感受野信息的丰富性以及中间潜在特征在图像重建中的重要作用,导致卷积层间的信息交互受限,进而造成图像细节信息丢失和重建精度不高的问题.鉴于此,本文提出了一种基于渐进式感受野的轻量级图像超分辨重建方法.该方法的核心在于设计了一种阶梯式的上下双路卷积链,通过逐步调整感受野的大小,有效地融合了图像的整体结构信息和局部细节特征,从而实现了信息的多样化表达.此外,还探索了一种多维潜在特征的融合方法,旨在充分挖掘多维潜在特征间的相关性.实验结果表明,与目前流行的重建方法相比,本文提出的方法在捕捉图像细节方面表现出色.特别是在缩放因子为4的情况下,与NGSwin相比,本文方法所需的参数量更低,且在Urban100测试集上,PSNR和SSIM分别提高了0.09dB和0.0027,这进一步验证了所提方法的优越性.

    Abstract:

    Traditional lightweight image super-resolution reconstruction methods typically rely solely on single-scale convolutions to extract image features, simply aggregating shallow and deep features for image reconstruction. However, this approach overlooks the richness of receptive field information and the crucial role of intermediate latent features in image reconstruction, leading to limited interaction between convolutional kernels and consequently resulting in the loss of image detail information and low reconstruction accuracy. In light of this, this paper proposes a lightweight image super-resolution reconstruction method based on progressive receptive fields. The core of this method lies in the design of a staircase-like bidirectional convolutional chain structure, which gradually adjusts the size of the receptive field, effectively integrating the overall structural information and local detail features of the image, thus achieving diversified expression of information. Furthermore, a method for the fusion of multi-dimensional latent features is explored, aiming to fully exploit and utilize the correlations between multi-dimensional features. Experimental results demonstrate that compared to currently popular reconstruction methods, the proposed method excels in capturing image details. Particularly, under a scaling factor of 4, compared to the NGSwin, the proposed method requires fewer parameters, and on the Urban100 test set, PSNR and SSIM are improved by 0.09dB and 0.0027 respectively, further validating the superiority of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-23
  • 最后修改日期:2024-09-10
  • 录用日期:2024-09-12
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码