一类无人艇的重复学习复合抗扰容错控制
CSTR:
作者:
作者单位:

1.山东科技大学电气与自动化工程学院;2.康考迪亚大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Repetitive Learning Composite Anti-Disturbance Fault-Tolerant Control for Unmanned Marine Vehicles
Author:
Affiliation:

1.College of Electrical Engineering and Automation, Shandong University of Science and Technology;2.Concordia University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类具有多重扰动、不可测速度信息和执行器故障的无人艇系统,提出了一种重复学习复合抗扰容错控制策略. 为了克服速度信息不可用的不足,提出了一种新的集成故障-扰动估计器,实现了故障和干扰之和的准确估计. 然后,基于观测信息,通过设计一类比例微分型重复学习复合抗扰容错控制器实现了周期性轨迹跟踪. 相比于传统比例微分型重复学习控制器,所提出的基于观测器的重复学习控制器不需要利用测量输出的导数且具有更大的控制自由度. 最后,通过对一类无人艇动力定位系统的仿真,验证了所提重复学习复合抗扰容错控制策略的有效性与优势.

    Abstract:

    This paper investigates the repetitive learning composite anti-disturbance fault-tolerant (CADFT) control issue for a class of unmanned marine vehicles (UMVs) with unmeasured velocity information, actuator faults and multiple disturbances. To overcome the absence of velocity information, a new integrated-fault-disturbance estimator is proposed to achieve the accurate estimation of the sum of faults and disturbances. Based on the observed information, a new kind of observer-based proportional-derivative (PD)-type repetitive learning CADFT controller is developed to realise the periodic trajectory tracking. The proposed repetitive learning controller avoids using the time derivative of measured outputs and provides more freedom degree of control than traditional PD-type repetitive learning controller. Finally, a numerical simulation on UMVs in the dynamic positioning mode is carried out to show the effectiveness and superiority of the proposed repetitive learning CADFT control method.

    参考文献
    相似文献
    引证文献
引用本文

张健,朱延正,苏春翌,等.一类无人艇的重复学习复合抗扰容错控制[J].控制与决策,2025,40(1):261-270

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-29
  • 最后修改日期:2024-08-22
  • 录用日期:2024-07-06
  • 在线发布日期: 2024-07-24
  • 出版日期:
文章二维码