多参数未知下水声传感网由粗到精的定位方法
CSTR:
作者:
作者单位:

1.上海海事大学;2.常州工学院;3.集美大学

作者简介:

通讯作者:

中图分类号:

TB393

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Coarse-to-Fine Localization Method for UASNs under Unknown Multi-Parameters
Author:
Affiliation:

Shanghai Maritime University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水声传感网(Underwater acoustic sensor networks, UASNs)是水下物联网的主要技术,为海洋生态环境监测和水下搜救等应用提供了较好的技术手段和信息感知平台。在UASNs应用中,定位至关重要,因为没有精确位置信息的数据收集将无利用价值。然而,由于存在路径损耗、吸收损耗、设备发射功率不确定以及水下环境参数未知等不利因素,使得在复杂动态海洋环境中实现鲁棒精确定位较为困难。为此,本研究提出一种多参数未知下水声传感网由粗到精的定位方法(Coarse-to-Fine Localization method for UASNs under Unknown Multi-Parameters, CFL-UMP)。首先,利用一阶泰勒级数展开和若干近似操作,将原非线性非凸定位问题转化为交替非负约束最小二乘框架。随后,粗定位阶段基于Golub-Kahan双对角化的最小二乘求解算法LSMR。然而,LSMR通常只能快速收敛到局部最优解。因此,在精细定位阶段引入二分法,将第一步粗估计得到的近似解作为二分法的初始值,通过迭代同时得到水下目标位置、路径损耗因子以及发射功率的精确解。此外,为了验证CFL-UMP算法的优越性,分析了CFL-UMP算法的计算复杂度,并推导出了克拉默-拉奥下界。最后,与所选基准算法相比,仿真结果证实了CFL-UMP在不同水下模拟场景中均能获得最优的定位精度,有效降低了水下定位误差。

    Abstract:

    Underwater Acoustic Sensor Networks (UASNs) are the main technology of the underwater Internet of Things (IoT), providing a better technical means and information sensing platform for applications such as marine ecological environment monitoring and underwater search and rescue. In the application of UASNs, localization is crucial because data collection without accurate location information will be of no use. However, the presence of unfavorable factors, such as path loss, absorption loss, uncertainty in device transmit power, and unknown parameters of the underwater environment, renders it more challenging to achieve robust and precise localization in complex dynamic ocean environment. To this end, this study proposes a Coarse-to-Fine Localization method for UASNs under Unknown Multi-Parameters (CFL-UMP). First, the original nonlinear and nonconvex localization problem is transformed into an alternating nonnegative constrained least squares framework (ANCLS) using a Taylor first-order expansion and several approximation operations. Subsequently, the coarse localization stage is based on the Golub-Kahan bi-diagonalized least squares solution algorithm LSMR. However, LSMR typically only converges rapidly to a locally optimal solution. Consequently, the dichotomy method is employed in the fine localization stage. The approximate solution derived from the coarse estimation in the preceding step serves as the initial value for the dichotomy method, and the exact solutions for the underwater target location, the path loss factor, and the transmit power are simultaneously obtained through iterations. Furthermore, to demonstrate the superiority of the CFL-UMP algorithm, the computational complexity of the CFL-UMP algorithm is analyzed and the Cramér?Rao Low Bound (CRLB) is derived. Finally, compared with the selected benchmark algorithms, the simulation results confirm that CFL-UMP achieves optimal localization accuracy in different underwater simulation scenarios, effectively reducing the underwater localization error.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-30
  • 最后修改日期:2024-10-28
  • 录用日期:2024-08-28
  • 在线发布日期: 2024-09-13
  • 出版日期:
文章二维码