数据驱动的未知线性离散系统双模模型预测控制
CSTR:
作者:
作者单位:

北京工业大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Data-driven Dual-mode Model Predictive Control for Unknown Linear Discrete Systems
Author:
Affiliation:

BEIJING UNIVERSITY OF TECHNOLOGY

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模型参数未知的线性离散系统,本文提出一种数据驱动的双模模型预测控制方法,无需预先对系统进行建模,能够实现在约束条件下对目标设定点的最优跟踪控制。首先,根据有限的系统历史运行数据预测系统未来一段时间的运行轨迹,并在代价函数中加入实时优化的人工平衡点,通过在线求解滚动优化问题获得控制输入,进而平稳地驱动系统进入到一个控制不变集内。接着在控制不变集内,基于系统历史运行数据,采用策略迭代的方法求解动态反馈控制器,同时可以得到静态前馈控制器,实现驱动系统收敛到平衡点的局部最优跟踪控制。最后,证明了该方法的稳定性,并将其应用到一个线性化的四容水箱系统当中,实验结果表明该方法有效可行,具有更小的超调量和更好的收敛性能。

    Abstract:

    This article proposes a data-driven dual-mode model predictive control method for linear discrete systems with unknown parameters, eliminating the need for system modeling. The proposed method enables optimal tracking of the setpoint under constraints. First, the system"s future trajectory is predicted based on limited historical operational data, and a real-time optimized artificial equilibrium point is incorporated into the cost function. Control inputs are then determined by solving an online rolling optimization problem, driving the system into a control-invariant set. Within this invariant set, a dynamic feedback controller is derived using the policy iteration method based on historical operational data, and a static feedforward controller is also obtained, achieving locally optimal control in guiding the system to converge to the equilibrium point. Finally, the stability of the method is proven, and it is applied to a linearized four-tank system. Experimental results demonstrate the method"s effectiveness and feasibility, with reduced overshoot and improved convergence performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-09
  • 最后修改日期:2024-09-10
  • 录用日期:2024-07-15
  • 在线发布日期: 2024-07-24
  • 出版日期:
文章二维码