基于卷积混合注意力机制的多目标跟踪算法
CSTR:
作者:
作者单位:

沈阳理工大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Enhanced two-stage multi-target tracking by convolutional hybrid attention
Author:
Affiliation:

Shenyang Ligong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前,基于检测的多目标跟踪算法在处理复杂场景中的漏检和 ID 切换等问题时展现了卓越的性能.然而,面对复杂场景中运动目标检测阶段的性能限制,这些算法仍有待提升.为应对此挑战,本文引入了一种全新的卷积混合注意力机制.该机制通过混合注意力模型加强对高动态场景中稀疏空间形变和上下文信息的关注,实现对不同尺度特征形变的动态加权.进一步地,本文提出了一种两阶段多目标跟踪方法——CHAMTrack,通过在运动目标检测阶段通过使用该注意力机制,可增强算法在复杂多目标跟踪场景中对关键信息的捕捉能力,显著改善同一场景中不同尺度目标的跟踪效果.为验证所提方法的有效性,本文分别在MOT17和MOT20数据集上进行测试,通过对结果分析表明CHAMTrack在关键性能指标MOTA和IDSw.上均显著提升.通过消融实验,进一步证明了其在复杂场景下多目标跟踪领域的应用价值.

    Abstract:

    Currently, detection-based multi-target tracking algorithms have shown excellent performance in dealing with the problems of missed detection and ID switching in complex scenes. However, these algorithms still need to be improved to face the performance limitations in the detection phase of moving targets in complex scenes. To address this challenge, a new convolutional hybrid attention mechanism is introduced in this paper. This mechanism strengthens the attention to sparse spatial deformation and contextual information in highly dynamic scenes through the hybrid attention model, and achieves the dynamic weighting of feature deformation at different scales. Further, a two-phase multi-target tracking method, CHAMTrack, is proposed in this paper. By using this attention mechanism in the detection phase of moving targets, the algorithm can enhance its ability to capture key information in complex multi-target tracking scenarios, and improve the tracking effect of targets of different scales in the same scene significantly. In order to verify the effectiveness of the proposed method, this paper tests it on MOT17 and MOT20 datasets respectively, and analyses of the results show that CHAMTrack significantly improves on the key performance indicators MOTA and IDSw. The ablation experiments further demonstrate its application value in the field of multi-target tracking in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-13
  • 最后修改日期:2024-08-24
  • 录用日期:2024-08-25
  • 在线发布日期: 2024-09-14
  • 出版日期:
文章二维码