基于分层边界与可视图的移动机器人自主探索算法研究
CSTR:
作者:
作者单位:

1.山东大学控制科学与工程学院;2.中铁建大桥工程局集团建筑装配科技有限公司、中国铁建大桥工程局集团有限公司;3.中铁建大桥工程局集团建筑装配科技有限公司

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(62373221)、山东省杰出青年基金(ZR2022JQ28)、天津市科技计划项目(23ZGCXQY00030)、企业项目(DQJ-2022-A03)


An Autonomous Exploration Algorithm of Mobile Robot Based on Hierarchical Frontier and Visibility Graph
Author:
Affiliation:

School of Control Science and Engineering, Shandong University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)(62373221), Shandong Province Outstanding Youth Fund (ZR2022JQ28), Tianjin Science and Technology Plan Project (23ZGCXQY00030), Enterprise Project (DQJ-2022-A03)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了减少机器人在探索过程中容易忽视局部狭小区域,路径重复度高,探索效率低下的问题,提出一种基于分层边界与可视图的自主探索算法。首先,根据三维地图中状态变化的体素,实时提取局部边界并增量构建全局边界,对边界聚类得到候选目标点;其次,基于增量更新的可视图对候选目标点进行综合指标的评价,采用一种指数衰减形式的评估函数;再次,将可视图与D*Lite算法结合,基于动态规划的思想,引导机器人快速的完成对未知环境的探索,避免重复路径。最后,在不同环境下进行仿真实验,数据证明本文方法在移动距离、运行时间、探索效率方面都优于NBVP、GBP2和DSVP算法。结果表明,该算法可以有效解决机器人在探索时忽视局部狭小区域、路径重复度高的问题,提高了机器人自主探索的效率。

    Abstract:

    In order to reduce the problems of the mobile robot easily overlooking local narrow areas, high path redundancy, and low exploration efficiency during the exploration process, an autonomous exploration algorithm based on hierarchical frontier and visibility graph is proposed. Firstly, the local frontier is extracted in real-time based on the state-changed voxels in the Octomap and the global frontier is incrementally constructed, clustering the frontier to obtain candidate target points. Secondly, candidate target points are evaluated using a comprehensive index based on an incrementally updated visibility graph, by employing an evaluation function in the form of exponential decay. Thirdly, the visibility graph is integrated with the D*Lite algorithm, guided by the principles of dynamic programming, to facilitate rapid completion of exploration of unknown environments by the robot and avoid redundant paths. Finally, simulation experiments conducted in different environments show that the algorithm outperforms NBVP, GBP2 and DSVP algorithms in terms of distance traveled, runtime, and exploration efficiency. These results indicate that the algorithm effectively addresses the problems of overlooking local narrow areas and high path redundancy, thereby improving the efficiency of robot autonomous exploration.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-04
  • 最后修改日期:2024-09-23
  • 录用日期:2024-09-24
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码