面向城市应急物资配送的多无人机协同路径规划算法
DOI:
CSTR:
作者:
作者单位:

1.上海海事大学;2.上海交通大学;3.同济大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

10.13195/j.kzyjc.2024.0675


Multi-UAV cooperative path planning algorithm for urban emergency material distribution
Author:
Affiliation:

1.Shanghai Maritime University;2.Shanghai Jiao Tong University;3.Tongji University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当城市发生突发性事件时,高效的应急物资配送能力是降低生命和财产损失的有效途径之一。为提高城市应急物资配送效率和效果,提出一种基于进化多任务的多无人机协同路径规划算法(multi-UAV cooperative path planning algorithm based on evolutionary multi-task optimization,MCPP-EMTO)。在该算法中,将原多无人机应急配送问题作为主任务,并将不考虑无人机续航能力和容量约束的多无人机应急配送问题当作辅助任务。同时,所提算法将辅助任务得到有用演化信息迁移至主任务以提高求解效率。为验证所提算法的性能,设置三个不同的城市应急配送场景,并选用四种高性能多目标进化算法作为比较算法。仿真实验表明,相比四种比较算法,所提算法能够得到多样性和逼近性较好的帕累托前沿。

    Abstract:

    When emergencies occur in cities, efficient emergency material distribution capabilities are one of the effective ways to reduce losses of life and property. To improve the efficiency and effectiveness of urban emergency supply distribution, a multi-UAV cooperative path planning algorithm based on evolutionary multi-task optimization (MCPP-EMTO) is proposed. In this algorithm, the original multi-UAV emergency distribution problem is regarded as the main task, while the multi-UAV emergency distribution problem disregarding endurance and capacity constraints of UAVs is regarded as an auxiliary task. Moreover, the proposed algorithm transfers the useful evolutionary information from the auxiliary task to the main task to improve the solution efficiency. In order to verify the performance of the proposed algorithm, three different urban emergency distribution scenarios are used, and four high-performance multi-objective evolutionary algorithms are selected as comparison algorithms. Simulation experiments show that compared with the four comparison algorithms, the proposed algorithm can obtain Pareto fronts with better diversity and approximation under different scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2024-10-15
  • 录用日期:2024-10-24
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码