运动动力学约束下基于自适应参数的运动规划方法
CSTR:
作者:
作者单位:

北京理工大学

作者简介:

通讯作者:

中图分类号:

TP

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Motion Planning Based on Adaptive Parameters Under Kinodynamic Constraints
Author:
Affiliation:

Beijing Institute of Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    稳定稀疏探索树(Stable Sparse RRT, SST) 是一种基于采样的渐近最优运动规划算法, 与传统的渐近最优算法RRT* 相比, SST 采用随机前向传播来生成新节点,无需求解两点边值问题(Boundary Value Problem, BVP), 即可直接规划出一条满足机器人运动学和动力学约束的可行轨迹. 针对SST 对参数敏感, 难以适应复杂多变的环境等问题, 提出一种基于自适应参数的SST 算法(Adaptive SST, ASST), 利用规划过程中的节点碰撞率和节点密度等已知信息, 对节点所处的环境区域和邻居信息进行估计, 自适应地改变节点选择半径和节点剪枝半径. 本文对多种系统动态和复杂环境类型进行了仿真验证, 仿真结果表明该算法能降低对参数的依赖性, 在复杂困难环境中能够求解成功率和计算效率, 对不同规划问题具有较强的适应性.

    Abstract:

    SST(Stable Sparse RRT) is a sampling-based asymptotically optimal motion planning algorithm. Compared with the traditional asymptotically optimal algorithm RRT*, SST employs random forward propagation to generate new nodes, without solving the two-point boundary value problem (BVP), and can directly plan a feasible trajectory that satisfies the system’s kinodynamic constraints. Considering the issues associated with SST’s sensitivity to parameters and challenges in adapting to complex and dynamic environments, an improved SST algorithm with adaptive parameters (Adaptive SST, ASST) is proposed in this paper. By utilizing known information such as node collision rate and node density during the planning process, the environmental area and neighborhood information of the node are estimated, and then the node selection radius and node pruning radius are adaptively changed. Simulation experiments have evaluated various types of system dynamics and complex environments, and the experimental results show that the proposed algorithm can reduce the dependence on parameters, improve the success rate and computational efficiency in complex environments, and have strong adaptability to different motion planning problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2024-10-09
  • 录用日期:2024-10-12
  • 在线发布日期: 2024-10-31
  • 出版日期:
文章二维码