基于异构扩散模型的输油管道缺陷及组件检测方法研究
CSTR:
作者:
作者单位:

东北大学

作者简介:

通讯作者:

中图分类号:

TE973;TP391.4

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on defect and component detection method of oil pipeline based on heterogeneous diffusion model
Author:
Affiliation:

Northeastern University

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高精度的缺陷检测和组件检测对确保管道的安全运行是至关重要的. 针对现有检测方法存在的精度低和泛化性差的难题, 本文提出一种基于异构扩散模型的新型管道缺陷和组件检测方法. 首先, 原始的漏磁信号被预处理来降低信号采集中噪声等负面因素的影响. 其次, 针对特征提取困难的问题, 本文设计了一种基于稀疏注意力模块的特征提取方法, 它通过稀疏化的方式建立了漏磁信号间的长距离依赖关系进而实现了模型对缺陷和组件的信息聚焦. 此外, 将传统的特征金字塔网络替换为路径聚合特征金字塔网络, 这充分确保了多尺度特征的完备性. 最后, 本文设计了一种基于异构扩散模型的检测机制, 它将候选框回归过程转换为随机框的去噪过程, 这减少了模型对预先设定的锚窗的依赖, 进而提升了模型的泛化性和准确性. 基于实际管道对其有效性进行了验证, 实验结果表明, 本文方法的平均检测精度达到97.4%, 优于最先进的对比方法3.5%, 这确保了其在实际应用中的前景.

    Abstract:

    High-accurate defect and component detection is essential to ensure the safe operation of pipelines. Aiming at the difficulties of low accuracy and poor generalization of existing detection methods, this paper proposes a novel pipeline defect and component detection method based on heterogeneous diffusion model. First, the raw magnetic flux leakage (MFL) signal is pre-processed to reduce the influence of negative factors such as noise in the signal acquisition. Second, to address the difficulty of feature extraction, a feature extraction method based on sparse attention module is designed, which establishes the long-distance dependence relationship between MFL signals through sparsification and then realizes the model to focus on the information of defects and components. In addition, the traditional feature pyramid network is replaced by the path aggregation feature pyramid network, which fully ensures the completeness of multi-scale features. Finally, a detection mechanism based on the heterogeneous diffusion model is designed, which converts the candidate frame regression process into a denoising process for random frames, which reduces the model’s dependence on a predefined anchor window, and in turn improves the model’s generalizability and accuracy. The experimental results show that the average detection accuracy of this method reaches 97.4%, which is better than the state-of-the-art comparative method by 3.5%, which ensures the prospect of its practical application.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-16
  • 最后修改日期:2024-08-21
  • 录用日期:2024-08-21
  • 在线发布日期: 2024-09-01
  • 出版日期:
文章二维码