基于角分解辅助的多阶段高维多目标进化算法
CSTR:
作者:
作者单位:

1.东北大学信息科学与工程学院;2.工业智能与系统优化国家级前沿科学中心

作者简介:

通讯作者:

中图分类号:

TP27

基金项目:

国家自然科学基金项目(62273080)和高等学校学科创新引智计划“111计划”(B16009)资助。


Many-objective evolutionary algorithm based on angle decomposition assist in multi-stage
Author:
Affiliation:

1.The College of Information Science and Engineering, Northeastern University, Shenyang, 110004, China.;2.National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang 110004, China

Fund Project:

This work was supported in part by the National Natural Science Foundation of China under Grant 62273080, and in part by the 111 Project under Grant B16009.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大多数现存高维多目标进化算法仍无法在高维空间中有效平衡种群收敛性与多样性的问题, 本文提出一种基于角分解辅助的多阶段高维多目标进化算法(Angle-decomposition assisted Multi-stage Evolutionary Algorithm for many-objective optimization, AMEA). 该算法协作角分解机制与多阶段自适应删除策略来逐一淘汰种群中性能较差的个体, 进而平衡种群的收敛性和多样性. 前者选取一对夹角最小的个体, 其意味着它们最为相似; 后者根据种群的进化状态自适应地淘汰这对个体中性能较差的个体. 当种群处于未收敛于Pareto前沿状态时,该删除策略淘汰收敛性较差的个体, 以加速种群收敛. 如果这对个体具有相同的收敛性, 该删除策略淘汰多样性较差的个体. 反之, 该删除策略利用所设计的综合性能指标来淘汰收敛性和多样性都较差的个体, 以提升种群的综合性能. 此外, 该算法设计了径向空间投影的匹配选择策略来选取收敛性与多样性好的个体进入交配池, 进而提高算法探索高维空间的能力. 实验结果表明,AMEA在处理高维多目标优化问题时有较强的竞争力, 能有效地平衡种群的收敛性与多样性.

    Abstract:

    Aimed at the problem that most existing many-objective evolutionary algorithms still cannot effectively balance convergence and diversity of the population in the high-dimensional space, this paper proposes an angle-decomposition assisted multi-stage evolutionary algorithm for many-objective optimization (AMEA). This algorithm collaborates the angle-decomposition mechanism and a multi-stage adaptive deletion strategy to eliminate individuals with poor performance one-by-one, and thus balance convergence and diversity of the population. Specifically, the former selects a pair of individuals with the minimum angle, which means they are the most similar; The latter adaptively eliminates individuals with poor performance based on the evolutionary state of the population. When the population does not converge to the Pareto front, this deletion strategy eliminates individuals with poor convergence to accelerate population convergence If these two individuals have the same convergence, the deletion strategy eliminates individuals with poor diversity. On the contrary, the deletion strategy utilizes the designed comprehensive performance indicators to eliminate individuals with poor convergence and diversity for improving the overall performance of the population. In addition, a mating selection strategy based on radial space projection is designed to select individuals with good convergence and diversity for variation, and further improves the ability of AMEA to explore the high-dimensional space. Experimental results show that AMEA has strong competitiveness in dealing with many-objective optimization problems compared with its competitors.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-10-24
  • 录用日期:2024-10-26
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码