基于稳定特征原型的云边协同联邦类别增量学习方法
CSTR:
作者:
作者单位:

浙江大学控制科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

浙江省“尖兵”“领雁”研发攻关计划项目(2024C01163),国家自然科学基金杰出青年基金(No. 62125306),工业控制技术全国重点实验室资助(No.ICT2024A06)


Could-edge Collaborative Federated Class-incremental Learning with Consistent Feature Prototypes
Author:
Affiliation:

College of Control Science and Engineering, Zhejiang University

Fund Project:

the Zhejiang Key Research and Development Project (2024C01163) , National Natural Science Foundation of China (No. 62125306),the State Key Laboratory of Industrial Control Technology, China (Grant No. ICT2024A06)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于存储空间限制,物联网中的边缘设备往往仅能保留当前某个有限时段内的数据。实际生产过程中,设备工况在一定时间内发生变动,往往产生新类别的故障数据或图像,这种类别增量会造成模型在本地训练时产生灾难性遗忘。在单边端类别增量的局部灾难性遗忘基础上,随着云边协同优化,灾难性遗忘会产生扩散。针对上述问题,提出一种基于稳定特征原型的联邦类别增量学习方法,在边端建立类别样本记忆库存储类别代表性样本,设计了基于回放范式的特征网络更新策略,在云端设计了以统一特征空间下的特征原型为参考基准的加权聚合策略,在联邦框架下稳定优化特征空间,实现类别知识的联邦更新。基于类别增量常用的数据集CIFAR10和Mini-ImageNet的实验证明了所提方法可以有效缓解灾难性遗忘。

    Abstract:

    Due to limited storage, edge devices in the Internet of Things (IoT) usually retain data for a limited time period. In real production processes, the equipment conditions change over time, often generating new classes of fault data or images. This class increment can cause catastrophic forgetting when the model is trained locally. Based on the partial catastrophic forgetting of class increment on a single edge, catastrophic forgetting will spread with the collaborative optimization of cloud and edge. To address the above problems, a federated class incremental learning method based on stable feature prototypes is proposed. A class sample memory is established at the edge to store representative samples of the class. A feature network update strategy based on the replay paradigm is designed. A weighted aggregation strategy based on feature prototypes in a unified feature space is designed in the cloud. The feature space is stably optimized in the federated framework to realize the federated update of class knowledge. Experiments on CIFAR10 and Mini-ImageNet, which are commonly used datasets for class increment, demonstrate that the proposed method can effectively alleviate catastrophic forgetting.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-21
  • 最后修改日期:2024-09-10
  • 录用日期:2024-09-10
  • 在线发布日期: 2024-09-19
  • 出版日期:
文章二维码