基于信号补偿与强化学习的赤铁矿再磨压力智能PI控制
CSTR:
作者:
作者单位:

东北大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61991402, 62173170,62333004)


Intelligent PI Control of Hematite Regrinding Pressure Based on Signal Compensation and Reinforcement Learning
Author:
Affiliation:

Northeastern University

Fund Project:

The National Natural Science Foundation of China (61991402, 62173170,62333004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    赤铁矿再磨过程是针对低品位赤铁矿的特有选矿过程,给矿压力控制是再磨过程的关键工艺过程。为了保证给矿压力的精确控制,本文将常规PI控制与信号补偿技术和强化学习相结合,提出一种智能PI控制方法。首先,将被控对象描述为低阶线性模型加频繁变化的未知非线性动态系统的形式,采用精确计算的前一时刻未知非线性项和闭环运行数据,设计补偿信号,叠加到PI控制器的输出,从而改善控制系统的动态性能。其次,利用闭环系统的实时运行数据,采用强化学习迭代求取最优的PI控制器和补偿器参数,保证闭环系统的稳定运行。最后,通过与已有方法的对比实验和工业过程真实数据的物理实验,实验结果表明了所提方法的优越性。

    Abstract:

    The regrinding process of hematite is a unique beneficiation process for low-grade hematite, where the control of the ore feed pressure is a key process. To ensure precise control of the ore feed pressure, this paper proposes an intelligent PI control method which combines conventional PI control with signal compensation technology and reinforcement learning. Firstly, describing the controlled object as a low-order linear model with frequent changes in unknown nonlinear dynamic systems, the compensation signal is designed using precisely calculated unknown nonlinear terms from the previous moment and closed-loop operating data, superimposed on the output of the PI controller to improve the dynamic performance of the control system. Secondly, using reinforcement learning and real-time operational data of the closed-loop system to iteratively determine the optimal parameters for the PI controller and compensator, ensuring the stable operation of closed-loop systems. Finally, through comparative experiments with existing methods and physical experiments using real industrial process data, the experimental results demonstrate the superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-22
  • 最后修改日期:2024-11-08
  • 录用日期:2024-11-10
  • 在线发布日期: 2024-12-03
  • 出版日期:
文章二维码