基于时间序列形态的模糊聚类算法
CSTR:
作者:
作者单位:

兰州交通大学

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金项目(No.62266029);甘肃省高等学校产业支撑计划项目(No.2022CYZC-36)


Fuzzy clustering algorithm based on time series morphology
Author:
Affiliation:

Lanzhou Jiaotong University

Fund Project:

National Natural Science Foundation of China (No. 62266029) ; Gansu Higher Education Industry Support Program, China (No.2022CYZC-36)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有时间序列聚类分析较少考虑到各簇时间序列的相似形态对聚类结果的影响, 本文提出一种基于时间序列形态的模糊聚类算法. 该算法使用线性时间复杂度的 Jeffreys 复合距离度量时间序列之间的距离, 利用迭代过程中的隶属度为各簇择选能够映射簇内时间序列相似形态的核心特征, 并在下一次迭代中对距离进行特征加权. 当隶属度不再显著变化时, 算法停止迭代, 最后根据隶属度最大原则对时间序列进行簇划分. 在 14 个公开时间序列数据集上与 10 种对比算法的实验结果表明, 该算法具有精确的聚类结果和较好的鲁棒性, 综合性能优于对比算法.

    Abstract:

    Aiming at the existing time series clustering analysis which seldom consider the influence of time series morphological commonality in clusters on the clustering results, this paper proposes a Fuzzy clustering algorithm based on time series morphology. In this algorithm, Jeffreys complex distance with linear time complexity is used to measure the distance between time series, the membership degree in the iterative process is used to select the core features for each cluster that can map the similar shape of time series in the cluster, and the distance is weighted by features in the next iteration. When the membership no longer changed significantly, the algorithm stopped iteration, and finally divides the time series into clusters according to the principle of maximum membership degree. The experimental results with 10 comparison algorithms on 14 time series public datasets show that the algorithm has accurate clustering results and better robustness, and the overall performance is better than the comparison algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-26
  • 最后修改日期:2024-09-11
  • 录用日期:2024-09-12
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码