基于参数优化MVMD的滚动轴承多元故障信号诊断方法
DOI:
CSTR:
作者:
作者单位:

沈阳工业大学

作者简介:

通讯作者:

中图分类号:

TH878 TB552

基金项目:

国家自然科学基金青年基金资助项目(62003221);辽宁省教育厅重点研发项目(JLKZZ20220021);辽宁省科技计划联合基金项目(2023-MSLH-255);辽宁省中青年科技创新人才项目(RC210257)


A Multivariate Fault Signal Diagnosis Method for Rolling Bearings Based on Parameter Optimized MVMD
Author:
Affiliation:

Shenyang University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统滚动轴承故障诊断方法中单信道振动数据分析导致的故障特征提取不充分、诊断精度受限的问题,提出了一种基于改进人工蜂群算法的多元变分模态分解(IABC-MVMD)与精细复合多元多尺度模糊熵(RCMMFE)相结合的多元故障信号诊断新方法。为克服MVMD分解过程中分解层数与带宽平衡参数难以自整定对诊断精度带来的影响,设计了一种融合Chebyshev混沌映射、精英信息引导、自适应惯性权重的改进人工蜂群算法(IABC),满足了多元激励信号在频域内的自适应剖分需求。在此基础上,使用RCMMFE构建能够全面表征轴承状态的高维故障特征集,并将其输入支持向量机中进行故障诊断。通过CWRU数据集上的仿真验证并与现有方法的对比分析,结果表明,所提方法能够高效准确地提取与识别滚动轴承的多元故障信号特征,具有较好的理论价值与实践意义。

    Abstract:

    To address the limitations of traditional rolling bearing fault diagnosis methods, which suffer from insufficient fault feature extraction and limited diagnostic accuracy due to single-channel vibration data analysis, this study proposes a novel multivariate fault signal diagnosis approach that combines Multivariate Variational Mode Decomposition based on improved artificial bee colony algorithm (IABC-MVMD) with Refined Composite Multivariate Multiscale Fuzzy Entropy (RCMMFE). To overcome the challenges posed by the difficulty in self-tuning the decomposition layers and bandwidth balancing parameters during MVMD, an improved artificial bee colony algorithm (IABC) which integrated Chebyshev chaotic mapping, elite information guidance, and adaptive inertia weight is designed. The algorithm effectively satisfies the adaptive partitioning requirements of multivariate excitation signals in the frequency domain. On this basis, RCMMFE is utilized to construct a high-dimensional fault feature set that can comprehensively characterize bearing states, and then these features are input into a support vector machine for fault diagnosis. Through simulation validation on the CWRU dataset and comparative analysis with existing methods, the results show that the proposed method can extract and identify the multivariate fault signal features of rolling bearings efficiently and accurately, thus exhibiting significant theoretical value and practical implications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-26
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-04
  • 在线发布日期:
  • 出版日期:
文章二维码