基于联合对抗域自适应网络的跨工况故障诊断方法
CSTR:
作者:
作者单位:

南京航空航天大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家重点研发计划资助项目


A Joint Adversarial Domain Adaptive Network based Cross Working Conditions Fault Diagnosis Method
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics

Fund Project:

The National Key Technologies R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际场景中难以获得带标签的故障数据,且训练数据与测试数据分布不一致导致诊断模型不适用的问题,提出了一种基于联合对抗域自适应网络(Joint Adversarial Domain Adaptation Network, JADAN)的跨工况故障诊断方法.首先,利用域对抗训练来提取源域和目标域的深层域不变特征,以提高诊断模型在目标域的泛化能力.提出一种基于Softmax预测和结构化预测的伪标签策略,使模型能够为无标签的目标域数据生成伪标签,同时,加入了类对齐模块,最小化源域和目标域之间的类原型距离,实现域与类的联合对齐,有效减少了决策边界附近样本被错误分类的概率.此外,在域判别器中引入了源域样本的权重分配机制,为每个源域样本自适应地分配权重,有效解决了模型训练过程中的负迁移问题,提升了模型的鲁棒性.实验结果表明,本文提出的方法能更有效地解决跨工况故障诊断问题.

    Abstract:

    In this paper, a Joint Adversarial Domain Adaptive Network(JADAN) based cross working conditions fault diagnosis method is proposed to address the challenges of acquiring labeled fault data in real-world scenarios and the inconsistencies between training and test data distributions that render diagnostic models ineffective. Initially, domain adversarial training is employed to extract deep domain-invariant features from both source and target domains, enhancing the generalization capability of the diagnostic model in the target domain. A Softmax and structural prediction based pseudo-label strategy is proposed, enabling the model to generate pseudo-labels for unlabeled target domain data. Simultaneously, a class alignment module is incorporated to minimize the distance between class prototypes of the source and target domains, achieving joint alignment of domain and class. This effectively reduces the probability of samples near the decision boundary being misclassified.Additionally, a weight assignment mechanism for source domain samples is integrated into the domain discriminator, enabling adaptive weight assignment for each source sample. This effectively mitigates the negative transfer issue during model training and enhances model robustness. Experimental results demonstrate that the proposed method effectively addresses the problem of cross working conditions fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-29
  • 最后修改日期:2024-10-28
  • 录用日期:2024-10-28
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码