概率约束下基于观测器的高效模型预测控制
CSTR:
作者:
作者单位:

上海理工大学

作者简介:

通讯作者:

中图分类号:

O231

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Efficient Model Predictive Control with Probabilistic Constraints Based on Observer
Author:
Affiliation:

University of Shanghai for Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文提出了一种随机模型预测控制(stochastic model predictive control,SMPC) 算法, 适用于具有有界加性噪声和不完整状态信息的线性离散时间系统. 首先, 假设噪声的一阶矩和二阶矩已知, 利用Chebyshev-Cantelli不等式将施加在状态和输入上的概率约束重新表述成确定性形式. 然后, 在高效模型预测控制(efficient model predictive control, EMPC) 的框架下设计了基于观测器的输出反馈控制器? 再者, 引入附加的摄动量, 采用“离线计算、在线综合”的方法来最大化初始可行域并计算控制律. 最后, 给出了一个平均渐近性能指标的上界,证明了所提算法的递推可行性. 文末给出了仿真结果, 以证明该算法的有效性.

    Abstract:

    This paper proposes a stochastic model predictive control (SMPC) algorithm for linear discrete-time systems with bounded additive noise and incomplete state information. Firstly, assuming that the first-order and second-order moments of the noise are known. The probability constraints imposed on the state and input are reformulated in deterministic forms by using Chebyshev-Cantelli inequality. Then, an observer-based output feedback controller is designed under the framework of efficient model predictive control (EMPC). Moreover, additional perturbations are introduced and the method of offline computation, online synthesis is adopted to maximize the initial feasible set and calculate the control law. Finally, we provide an average asymptotic performance bound and proof the recursive feasibility of the proposed algorithm. Simulation results are presented at the end to demonstrate the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-30
  • 最后修改日期:2024-10-31
  • 录用日期:2024-11-02
  • 在线发布日期: 2024-11-21
  • 出版日期:
文章二维码