基于概率推理学习优化的无人自行车质量偏心校正方法
CSTR:
作者:
作者单位:

桂林电子科技大学

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A mass eccentricity correction method for unmanned bicycles based on probability inference learning optimization
Author:
Affiliation:

Guilin University Of Electronic Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车体质量偏心是无人自行车一个重要的性能参数,为了降低车体质量偏心对无人自行车航向轨迹的影响,提出一种基于有模型强化学习原理的概率推理学习优化(PILO)偏心校正方法.该方法以车体侧向倾角(倾角速度)、车把转角(转角速度)以及车把控制力矩为输入,以对应时刻车体侧向倾角速度(倾角加速度)以及车把转角速度(车把转角加速度)为输出,利用高斯过程回归(GPR)构建系统的概率动态模型(PDM)表征系统的不确定性动态,并将其用于后续的状态序列预测;将质量偏心作为车把PD控制器的一个参数,考虑车体航向与车把转角间的运动约束,通过车体航向角速度构造目标函数,优化并校正系统的质量偏心参数.设定八种不同的负载偏心开展无人自行车仿真及物理样机实验,结果表明,PILO系统校正的绝对误差不超过0.005rad,相对误差不超过10%,并且展现了一定的抗干扰能力;与无模型的认知学习偏心优化(RLO)校正系统比较,PILO系统在参数整定难度、智能化以及容错能力等方面具有一定优势.

    Abstract:

    Bicycle mass eccentricity is an important performance parameter of unmanned bicycles. In order to reduce the influence of body mass eccentricity on the course trajectory of unmanned bicycles, a probabilistic inference learning optimization (PILO) eccentricity correction method based on the principle of model reinforcement learning was proposed. The method takes the lateral inclination Angle (Angle velocity), handlebar Angle (Angle velocity) and handlebar control moment as inputs, and takes the lateral inclination velocity (Angle acceleration) and handlebar Angle velocity (Angle acceleration) of the vehicle body at the corresponding time as outputs. The probabilistic dynamic model (PDM) of the system is constructed by Gaussian process regression (GPR), which is used for the subsequent state sequence prediction. Taking the mass eccentricity as a parameter of the handlebar PD controller, considering the kinematic constraint between the body heading and the handlebar Angle, the objective function is constructed by the body heading angular velocity, and the mass eccentricity parameter is optimized and corrected. The results show that the absolute error of PILO system is less than 0.005rad, the relative error is less than 10%, and the anti-jamming ability is demonstrated. Compared with the model free cognitive learning eccentric optimization (RLO) calibration system, PILO system has some advantages in parameter setting difficulty, intelligence and fault tolerance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-01
  • 最后修改日期:2024-12-12
  • 录用日期:2024-12-13
  • 在线发布日期: 2024-12-25
  • 出版日期:
文章二维码