考虑多换电站的多无人机应急电力巡检路径规划方法
CSTR:
作者:
作者单位:

1.合肥工业大学;2.国网安徽省电力有限公司无人机巡检作业管理中心;3.安徽送变电工程有限公司

作者简介:

通讯作者:

中图分类号:

C93

基金项目:

国家自然科学基金面上项目(72271076, 71971075, 71871079); 安徽省自然科学基金(2308085QG233)


Multi-UAV Emergency Power Inspection Path Planning Method Considering Multiple Charging Stations
Author:
Affiliation:

Hefei University of Technology

Fund Project:

The National Natural Science Foundation of China (72271076, 71971075, 71871079);Anhui Provincial Natural Science Foundation (23080850G233)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多无人机应急电力巡检的时间十分有限,在选择关键巡检目标时需要考虑各目标的故障概率差异,同时为提升巡检效率,可以引进换电站来降低无人机续航能力不足的影响.针对上述特点,将考虑多换电站的多无人机应急电力巡检路径规划问题建模为多站点多航次团队定向问题,并设计了一种融合软演员-评论家模型的遗传算法SAC-GA.首先,在遗传算法中加入两类局部搜索算子,以优化多无人机访问目标的选择和缩短无人机飞行路径距离.其次,提出了一种基于SAC模型的参数调优机制,利用SAC模型基于最大熵学习策略的优势,在遗传算法迭代过程中,根据历史学习经验和种群的状态动态生成合适的交叉、变异概率以及染色体再插入中的权距比.实验结果表明,算法在小规模实验和大规模实验上均具有明显优势,并通过消融实验验证了SAC-GA中局部搜索算子的有效性和本文参数调整方法的优越性.最后,通过案例分析验证了算法在不同应急场景下的有效性.

    Abstract:

    Limited time for multi-UAV emergency power inspection requires prioritizing targets based on fault probabilities. In order to improve the inspection efficiency, multi-charging stations can be introduced to reduce the impact of insufficient endurance of UAVs. The problem is formulated as a Multi-depot Multi-visit Team Orienteering Problem and addressed with a Genetic Algorithm with a Soft Actor-Critic model. The algorithm first incorporates two types of local search operators into the evolution process of the traditional genetic algorithm to optimize the selection of multiple UAVs visiting targets and to reduce the flight path distance of the UAVs. Secondly, a method for dynamically adjusting the parameters of genetic algorithm using reinforcement learning is proposed. By using the SAC model based on maximum entropy policy learning, during the iteration of genetic algorithm, dynamically adjusts crossover, mutation rates, and weight distance ratios in chromosome reinsertion based on past learning and population state. Experiments show the algorithm"s effectiveness in small and large-scale tests, with ablation experiments validating the local search operator"s effectiveness and the superiority of parameter tuning method. Finally, the algorithm’s efficacy in various emergency scenarios was validated via simulations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-04
  • 最后修改日期:2024-12-17
  • 录用日期:2024-12-18
  • 在线发布日期: 2024-12-31
  • 出版日期:
文章二维码