基于笛卡尔空间力补偿的柔性关节(SEA)协作机械臂轨迹跟踪控制
作者单位:

1.杭州电子科技大学;2.南方科技大学

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),


Trajectory Tracking Control for Collaborative Robotic Arms with SEA based on Force Compensation in Cartesian Space
Author:
Affiliation:

1.HANGZHOU DIANZI UNIVERSITY;2.Southern University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柔性关节机械臂控制精度低和轨迹跟踪控制动态性能差等问题,提出一种笛卡尔空间力补偿的轨迹跟踪控制算法,旨在提高笛卡尔空间轨迹跟踪精度. 首先,介绍了串联弹性执行器(SEA)和六自由度(6-DoF)机械臂系统模型,并设计了基于神经网络模型预测控制(NNMPC)的关节空间位置-速度-力矩混合控制算法. 随后,基于该关节控制器,设计了基于柔性关节机械臂的笛卡尔空间力补偿控制算法,该算法根据笛卡尔空间的跟踪误差,结合PID控制器计算出笛卡尔空间中的力补偿值,然后将其转换为关节力矩补偿值并补偿到关节控制器,以实现高精度的笛卡尔空间轨迹跟踪. 最后,通过仿真和实验验证了该控制器的有效性和优越性. 实验结果表明,设计的轨迹跟踪控制器整体精度为1.86mm,相较于无补偿的轨迹跟踪和基于位置补偿的轨迹跟踪控制算法,精度分别提升了2.91mm和1.77mm.

    Abstract:

    A trajectory tracking control algorithm based on Cartesian space force compensation is proposed to address the issues of low control accuracy and poor dynamic performance of trajectory tracking control for robotic arms with serial elastic actuator (SEA). The algorithm aims to improve the accuracy of Cartesian space trajectory tracking. Firstly, the SEA and the 6-degree-of-freedom (6-DoF) robotic arm system model are introduced, and a position-velocity-torque mixed control algorithm based on neural network model predictive control (NNMPC) is designed. Subsequently, based on this joint controller, a Cartesian space force compensation control algorithm for flexible joint manipulators is designed. This algorithm calculates the force compensation value in Cartesian space based on the tracking error, combines it with a PID controller, converts it into a target torque compensation value in the joint space, and compensates it to the joint controller to achieve high-precision Cartesian space trajectory tracking. Finally, the effectiveness and superiority of the proposed trajectory tracking controller were validated through simulation and experimental trials. The experimental outcomes demonstrate that the controller achieves an overall accuracy of 1.86 mm, marking an enhancement of 2.91 mm and 1.77 mm over the uncompensated trajectory tracking and position-based compensation trajectory tracking control algorithms, respectively.

    参考文献
    [1] Hewing L, Wabersich K P, Menner M, et al. Learning-based model predictive control: toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3(1): 269-296.
    [2] Ngo V T, Liu Y C. On Tracking Control of Robot Manipulator with Flexible Joints in Operational Space[J]. IFAC-PapersOnLine, 2023, 56(2): 1307-1312.
    [3] Visioli A, Lengani G. On the trajectory tracking control of industrial scara robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 224-232.
    [4] 苏玉鑫,郑春红. 机器人系统全局渐近稳定非线 性 PD+ 轨迹跟踪控制[J]. 控制与决策, 2009, 24(11): 1697. (Su Y X, Zheng C H. Nonlinear PD plus control for global asymptotic tracking of robot manipulators[J]. Control and Decision, 2009, 24(11): 1697.)
    [5] Roveda L, Forigione M, Piga D. Robot control parameters auto-tuning in trajectory tracking applications [J]. Control Engineering Practice, 2020, 101: 104488.
    [6] 杨亮,陈勇,刘治. 基于参数不确定机械臂系统的自适 应轨迹跟踪控制[J]. 控制与决策, 2019, 34 (11): 2485. (Yang L, Chen Y, Liu Z. Adaptive trajectory tracking control for manipulator with uncertain dynamics and kinematics[J]. Control and Decision, 2019, 34 (11):2485.)
    [7] Tong M, Lin W, Huo X, et al. A model-free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control[J]. International Journal of Advanced Robotic Systems, 2020, 17(1): 1729881419894417.
    [8] Yin X, Pan L. Enhancing trajectory tracking accuracy for industrial robot with robust adaptive control[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 97-102.
    [9] Zhai J, Xu G. A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(1): 391-395.
    [10] Alizadeh M, Samaei M H, Estakhri M V, et al. Robust trajectory tracking of a 3-dof robotic arm using a super-twisting fast finite time non-singular terminal sliding mode control in the presence of perturbations[J]. Proc of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2024: 09596518241229741.
    [11] Bankole A T, Mu’azu M B, Igbonoba E E C. Trajectory Tracking of a Data-Based Model of a Two-Link Robotic Manipulator Using Model Predictive Controller[J]. Engineering Proceedings, 2023, 37(1): 100.
    [12] Carron A, Arcari E, Wermelinger M, et al. Data-driven model predictive control for trajectory tracking with a robotic arm[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3758-3765.
    [13] Gold T, V?lz A, Graichen K. Model predictive position and force trajectory tracking control for robot-environment interaction[C]. Proc of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA, 2020: 7397-7402.
    [14] Yan Y, Tang M, Wang W, et al. Predictive control of robot arm trajectory tracking based on control Lyapunov function[C]. Proc of 2023 International Conference on Advanced Robotics and Mechatronics (ICARM). 2023: 977-982.
    [15] Xu S, Wu Z, Chu Z, et al, Iterative flexibility compensation based high precision trajectory tracking for industrial manipulators[J]. Journal of the Franklin Institute, 2024, 361(13):107049.
    [16] Chen S, Wen J T. Industrial robot trajectory tracking control using multi-layer neural networks trained by iterative learning control[J]. Robotics, 2021, 10(1):50.
    [17] Xu J, Li D, Zhang J. Extended state observer based dynamic iterative learning for trajectory tracking control of a six-degrees-of-freedom manipulator[J]. ISA Transactions, 2023, 143: 630-646.
    [18] Wang H, Zhang Y, Zhao Z, et al. Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots[J]. Nonlinear Dynamics, 2021, 106(1): 459-471.
    [19] Mahmoodabadi M J, Nejadkourki N. Trajectory tracking of a flexible robot manipulator by a new optimized fuzzy adaptive sliding mode-based feedback linearization controller[J]. Journal of Robotics, 2020: 1-12.
    [20] Chen S, Wen J T. Neural-learning trajectory tracking control of flexible-joint robot manipulators with unknown dynamics[C]. Proc of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China, 2019: 128-135.
    [21] Wang X, Hou B. Trajectory tracking control of a 2-DOF manipulator using computed torque control combined with an implicit lyapunov function method[J]. Journal of Mechanical Science and Technology 32 (2018): 2803-2816.
    [22] Roveda L, Forgione M, Piga D. Robot control parameters auto-tuning in trajectory tracking applications[J]. Control Engineering Practice, 2020, 101: 104488.
    [23] Bilal D K, Unel M. Increasing trajectory tracking accuracy of industrial robots using SINDYc[J]. IFAC-PapersOnLine, 2021, 54(4): 13-18.
    [24] Xiong G L, Chen H C, Shi J X, et al. Joint torque control of flexible joint robots based on sliding mode technique[J]. International Journal of Advanced Robotic Systems, 2019, 16(3): 1729881419846712.
    [25] Ruderman M. Compensation of Nonlinear Torsion in Flexible Joint Robots: Comparison of Two Approaches [J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5744-5751.
    [26] Dong Y, Ren T, Wu D, et al. Compliance Control for Robot Manipulation in Contact with a Varied Environment Based on a New Joint Torque Controller[J].Journal of Intelligent & Robotic Systems, 2020, 99: 79-90.
    [27] Deotalu R, Chiddarwar S. Trajectory Tracking of the Manipulator using Adaptive Computed Torque Control [C]. Proc of 2020 IEEE International Conference for Innovation in Technology (INOCON), Bengaluru, India, 2020: 1-6.
    [28] Spong M W. Adaptive control of flexible joint manipulators[J]. Elsevier Science Publishers B. V., 1989, 13(1): 15-21.
    [29] Lin T, Horne B G, Giles C L. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies[J]. Neural Networks, 1998, 11(5): 861-868.
    [30] A. W?chter, L. T. Biegler, On the implementation of an interior point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106, (1): 25–57.
    [31] Andersson J A E, Gillis J, Horn G, et al, Casadi: a software framework for nonlinear optimization and optimal control[J]. Mathematical Programming Computation, 2019, 11, (1): 1–36.
    [32] Kingma D, Ba J. Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:66
  • 下载次数: 75
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-06
  • 最后修改日期:2024-11-21
  • 录用日期:2024-11-22
  • 在线发布日期: 2024-12-05
文章二维码