基于注意力预训练自编码器的无人机集群干扰资源分配方法
CSTR:
作者:
作者单位:

1.国防科技大学电子对抗学院;2.电子制约技术安徽省重点实验室

作者简介:

通讯作者:

中图分类号:

TN975

基金项目:


UAV swarm jamming resource allocation method based on Attention-Pretrained Self-Encoder
Author:
Affiliation:

1.National University of Defense Technology;2.Anhui Province Key Laboratory of Electronic Restriction

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    干扰资源分配作为认知电子战的重要环节之一,旨在干扰资源有限的情况下,通过合理分配干扰资源达到最大的干扰效益。本文针对通信、导航受限的拒止条件下,无人机集群协同干扰多个可移动通信目标时由于环境状态空间过大以及环境非平稳导致多智能体强化学习(MARL)算法决策性能较差的问题,提出了一种基于自注意力机制的预训练自编码器(APSE),并将其作为MARL算法的前置单元对环境状态进行特征提取和降维,同时通过集中式训练分布式执行范式降低环境非平稳对算法决策性能的影响。在本文建立的无人机集群协同干扰仿真环境中的实验结果表明,加入APSE后的MARL算法在平均奖励和干扰资源分配效能上提升明显。其中,MAPPO-APSE在各项指标上表现最优,其在有效干扰占空比比相比MAPPO更长的情况下干扰资源消耗量降低了20%。

    Abstract:

    The allocation of jamming resources is an important aspect of cognitive electronic warfare, aimed at achieving maximum jamming effectiveness through the reasonable allocation of limited jamming resources. This paper addresses the challenges faced by multi-agent reinforcement learning (MARL) algorithms in scenarios where UAV swarms collaboratively interfere with multiple mobile communication targets under constrained communication and navigation conditions, particularly due to the expansive state space and non-stationary environment leading to suboptimal decision-making performance. We propose an Attention-Pretrained Self-Encoder (APSE) which serves as a preprocessing unit for MARL algorithms, enabling effective feature extraction and dimensionality reduction of environmental states. Additionally, we adopt a centralized training and distributed execution paradigm to mitigate the impact of environmental non-stationarity on algorithmic decision performance. The experimental results in the UAV swarm collaborative interference simulation environment established in this study demonstrate a significant improvement in average rewards and interference resource allocation efficiency with the integration of APSE into the MARL algorithm. Among them, MAPPO-APSE exhibits the best performance across all metrics, reducing jamming resource consumption by 20% while maintaining a longer effective jamming duty cycle compared to MAPPO.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-08
  • 最后修改日期:2024-11-21
  • 录用日期:2024-11-22
  • 在线发布日期: 2024-12-04
  • 出版日期:
文章二维码