基于迹距离划分决策树的高炉故障诊断方法
CSTR:
作者:
作者单位:

东北大学工业智能与系统优化国家级前沿科学中心

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Blast Furnace Fault Diagnosis Method Based on Trace Distance Partitioning Decision Tree
Author:
Affiliation:

National Frontiers Science Center for Industrial Intelligence and Systems Optimization

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着工业自动化和智能化的发展,利用机器学习技术对高炉故障进行诊断变得越来越重要. 决策树模型 因其直观、易于解释的特点,在故障诊断领域得到了广泛应用,但对于炼铁过程中存在高维度、非线性和强耦 合的特点,传统决策树模型的构建容易陷入局部最优解,效率较低且复杂度较高. 针对这些问题,本文首先引入 迹距离函数,并证明了在迹距离函数中任何局部最优解也是全局最优解的性质,接着针对决策树的节点分裂过 程,提出了一种基于迹距离划分的决策树模型,记作 TraceTree. 此模型一方面更快速地评价一个节点的划分效 果,有效降低决策树模型的复杂度. 另一方面能识别出对故障诊断最有贡献的特征参数并获得更高的诊断精度. 最后,与其他改进模型的对比实验结果表明,该模型在更短的训练时间内能取得最优的高炉故障诊断效果,及 时地对高炉炉况进行监测与诊断.

    Abstract:

    With the development of industrial automation and intelligence, the use of machine learning techniques for blast furnace (BF) fault diagnosis has become increasingly important. The decision tree model, due to its intuitive and easy-to-interpret characteristics, has been widely applied in the field of BF fault diagnosis. However, for the ironmaking process there are high dimension, nonlinear and Strong Coupling, the construction of the traditional decision tree model is easy to fall into the local optimal solution, with low efficiency and high complexity. To tackle the above issues, this paper firstly introduces the trace distance function and proves that any local optimal solution is also a global optimal solution in the trace distance function. It then proposes a decision tree model based on trace distance partitioning for the node splitting process in decision trees, referred to as TraceTree. On the one hand, this model evaluates the division effect of a node more quickly and reduces the complexity of the decision tree model effectively. On the other hand, it can identify the features that contribute the most to fault diagnosis and obtain higher diagnosis accuracy. Finally, the comparison with other improved models shows that the model can achieve optimal diagnosis of BF faults with less training time, and monitor and diagnose the BF conditions in a timely manner.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-16
  • 最后修改日期:2024-09-19
  • 录用日期:2024-09-20
  • 在线发布日期: 2024-10-12
  • 出版日期:
文章二维码