采用延迟补偿和曲率增广的车辆路径跟踪控制
CSTR:
作者:
作者单位:

1.西安科技大学电气与控制工程学院;2.西安科技大学机械工程学院

作者简介:

通讯作者:

中图分类号:

U461.6

基金项目:

国家自然科学基金项目(51775426);西安市科技计划项目(21XJZZ0039);咸阳市重点研发计划项目(2021ZDYF-GY-0027)


Vehicle path tracking control using delay compensation and curvature broadening
Author:
Affiliation:

1.College of Electrical and Control Engineering, Xi''an University of Science and Technology;2.School of Mechanical Engineering, Xi''an University of Science and Technology

Fund Project:

National Natural Science Foundation of China(51775426);Science and Technology Program of Xi’an (21XJZZ0039);Key Research and Development Plan of Xianyang(2021ZDYF-GY-0027)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对转向系统的延迟和道路曲率的变化会降低路径跟踪精度和稳定性问题,本文提出了一种采用延迟补偿和曲率增广的模型预测路径跟踪控制策略。首先建立1阶惯性模型表示转向系统因信号传输、机械摩擦引起的响应延迟,采集实车转角数据并利用粒子群优化算法完成转向延迟模型的参数辨识;在此基础上融合转向延迟模型到路径跟踪误差方程中以提高控制系统模型的准确性,并将曲率作为模型预测控制的增广量以减小曲率对跟踪精度的扰动;最后对所设计的控制策略进行仿真和实车试验。仿真结果表明,所设计的控制策略在大曲率转工况下的横向偏差和横摆角偏差分别降低了63.1%和7.5%,在双移线工况下的横向偏差和横摆角偏差分别降低了30.9%和43.4%,避免了转向延迟引起的转角振荡,提高了车辆路径跟踪精度和稳定性。实车试验结果表明,所设计的控制策略在双移线工况下的横向偏差和横摆角偏差分别降低了36.6%和30.4%,验证了控制策略的有效性。

    Abstract:

    To address the issues of path tracking accuracy and stability degradation due to steering delay and curvature variation, a model predictive path tracking control strategy with delay compensation and curvature augmentation has been developed. Firstly, a first-order inertial model is established to represent the response delay of the steering system caused by factors such as signal transmission and mechanical friction. Real vehicle steering angle data is collected and the parameters of the steering delay model are identified using the Particle Swarm Optimization algorithm. On this basis, the steering delay model is integrated into the vehicle path tracking error equation to enhance the accuracy of the control system model, and curvature is used as an augmentation term in model predictive control to reduce the disturbance of curvature on tracking accuracy. Finally, the designed control strategy is tested through simulation and real vehicle experiments. Simulation results show that the designed control strategy reduced the lateral deviation and yaw angle deviation by 63.1% and 7.5%, respectively, in high curvature turning conditions, and by 30.9% and 43.4%, respectively, in double lane change conditions, avoiding the steering angle oscillation caused by steering delay, thereby improving the vehicle""s path tracking accuracy and stability. Real vehicle test results show that the designed control strategy reduced the lateral deviation and yaw angle deviation by 36.6% and 30.4%, respectively, in double lane change conditions, confirming the effectiveness of the control strategy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-16
  • 最后修改日期:2024-12-19
  • 录用日期:2024-12-22
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码