基于多分支融合嵌入式注意力特征提取的油井工况诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TE933

基金项目:

国家自然科学基金项目(62173073).


Well condition diagnosis based on multi-branch fusion embedded attention feature extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对油井示功图特征提取效果不佳导致工况诊断准确率不高的问题, 提出一种基于多分支融合嵌入式注意力特征提取的油井工况诊断方法. 首先, 为使提取的示功图隐含特征信息更加全面, 在卷积自编码器的基础上, 设计多分支、多尺度的编码器结构提取, 并融合示功图位移-载荷数据的特征信息; 其次, 为强化多分支融合后的局部特征, 设计一种嵌入式通道注意力机制, 在全局平均池化基础上, 添加全局最大池化, 使其能够同时关注示功图全局和局部特征; 同时, 为进一步增强示功图关键信息的隐含特征提取能力, 在通道挤压后, 激励之前嵌入通道注意力机制模块对挤压后的通道预先进行一次权重调整, 激励后进行权重的二次调整; 最后, 将提取的特征放入长短期记忆网络模型中进行油井工况诊断. 结果表明, 基于多分支融合嵌入式注意力特征提取的油井工况诊断方法在一定程度上改善了示功图有效特征提取能力, 提高了油井工况诊断率, 能够满足油田现场的实际需求.

    Abstract:

    Aiming at the problem that the poor feature extraction of the oil well indicator diagram leads to the low accuracy of condition diagnosis, an oil well condition diagnosis method based on multi-branch fusion embedded attention feature extraction is proposed. Firstly, in order to make the extracted implicit feature information of the indicator diagram more comprehensive, based on the convolutional autoencoder, a multi-branch and multi-scale encoder structure is designed to extract and fuse the feature information of the displacement-load data of the indicator diagram. Then, in order to strengthen the local features after multi-branch fusion, an embedded channel attention mechanism is designed to add global maximum pooling on the basis of global average pooling, so that it can pay attention to the global and local features of the indicator diagram at the same time. Meanwhile, in order to further enhance the ability of implicit feature extraction for key information of the indicator diagram, the channel attention mechanism module is embedded after the channel squeeze and before the excitation, so that the squeezable channel is pre-adjusted with the weights once and the weights are adjusted twice after the excitation. Finally, the extracted features are put into the long short-term memory network model for well condition diagnosis. The results show that the well condition diagnosis method based on multi-branch fusion embedded attention feature extraction improves the effective feature extraction capability of the indicator diagram to a certain extent, increases the well condition diagnosis rate, and meets the actual needs of the oilfield.

    参考文献
    相似文献
    引证文献
引用本文

王通,李远超,高宪文,等.基于多分支融合嵌入式注意力特征提取的油井工况诊断[J].控制与决策,2025,40(5):1742-1750

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-15
  • 出版日期: 2025-05-20
文章二维码