高维度非接触磁悬浮操控系统:Maglev-Delta机器人
CSTR:
作者:
作者单位:

威斯康星大学麦迪逊分校

作者简介:

通讯作者:

中图分类号:

TP242.2

基金项目:


Maglev-Delta Robot: A Magnetic Levitation Control System for High-Dimensional Non-Contact Manipulation
Author:
Affiliation:

UW-Madison

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非接触操控在工业领域有着重要应用需求,然而在高维度场景下灵活快速地非接触操控仍是业界挑战。为此,研究基于深度强化学习(Deep Reinforcement Learning, DRL)的高维度非接触磁悬浮操控系统,简称Maglev-Delta机器人。其中,从理论层面给出稳定磁悬浮操控基本条件,提出可控区域最大化磁铁布局方案,实现高维悬浮操控执行模块设计。提出磁场强度非线性化弱化方法,解决了原始磁场在磁铁近处困住执行器导致DRL控制器训练样本稀缺问题。构建兼顾移动速度和悬浮精度的奖励函数模型,提高了控制器操控性能。实验表明,所搭建Maglev-Delta机器人能以较高的速度和精度完成二维和三维悬浮控制任务,展现出优越的灵活性。尤其在模拟搬运任务中,机器人能够稳定完成负载搬运任务。由实验结果推理可知,规模化的Maglev-Delta机器人可实现在约27×27×27 m3区域内操控3.8×10? kg重物,展现出巨大的非接触操控应用潜力。

    Abstract:

    Non-contact control technologies hold immense promise in industries, yet achieving agile and efficient non-contact manipulation in high-dimensional spaces remains a formidable challenge. This study introduces a novel deep reinforcement learning (DRL)-driven magnetically levitated Delta-robot system, termed the Maglev-Delta robot. Theoretically, we delineate the fundamental prerequisites for magnetic levitation control and propose an optimized magnet array configuration to maximize the controllable domain, thereby enabling the design of a high-dimensional levitation control execution module. A method for nonlinear attenuation of magnetic field strength is introduced to address the issue of actuator entrapment near the magnets, which leads to a scarcity of training samples for the DRL controller. Additionally, we construct a novel reward function model balancing movement speed and levitation precision to enhance the levitation control performance of the DRL controller. Experimental results demonstrate that the developed Maglev-Delta robot can achieve high-speed and high-precision two-dimensional and three-dimensional levitation control tasks, showcasing exceptional flexibility. Notably, in simulated handling tasks, the robot was able to stably complete load handling tasks. Based on the experimental results, we analyze that the scaled-up Maglev-Delta robot can execute levitation maneuvers within a substantial 27×27×27 m3 volume, capable of manipulating masses up to 3.8×10? kg, thereby underscoring its vast potential for practical applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-22
  • 最后修改日期:2024-10-29
  • 录用日期:2024-10-30
  • 在线发布日期: 2024-11-20
  • 出版日期:
文章二维码