一种基于概率分布分层图聚类网络的社区检测模型
CSTR:
作者:
作者单位:

1.盐城工学院;2.哈尔滨工程大学

作者简介:

通讯作者:

中图分类号:

TP181; TP301

基金项目:

国家自然科学基金项目 (62076215,62301473); 中央高校基本科研业务费专项资金 (K93-9-2022-03); 江苏省高等教育厅面上项目(No.23KJB520039); 江苏省网络与信息安全重点实验室(BM2003201); 江苏高校“青蓝工程”; 盐城市基础研究计划项目(No.YCBK2023008).


A Community Detection Model based on Hierarchical Graph Clustering network with Probability Distribution
Author:
Affiliation:

1.Yancheng Institute of Technology;2.Harbin Engineering University

Fund Project:

The National Natural Science Foundation of China (62076215,62301473);The Central Universities Basic Scientific Research Business Fee Special Fund(K93-9-2022-03);The Jiangsu Provincial Department of Education General Project(No.23KJB520039); The Jiangsu Province Key Laboratory of Network and Information Security(BM2003201); The Jiangsu Higher Education Institutions

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了捕捉网络的隐藏结构,减少社区检测模型对初始参数选择的依赖性,本文提出一种基于概率分布分层图聚类网络(Hierarchical Graph Clustering Network with Probability Distribution,HGCPD)的社区检测模型。首先,利用图卷积网络学习和缓存图中节点的特征表示;其次,引入一种基于节点对相似度概率的分层聚类方法,在不同层次上递归地构建社区结构;最后,探究模型超参数优化问题,设计贝叶斯优化方法自动调整参数,从而提升模型效率。在多个不同规模的网络数据集上的实验表明,HGCPD模型在社区检测的准确性、有效性均优于主流方法,并通过可视化验证了模型的可解释性。

    Abstract:

    In order to capture the hidden structure of the network and reduce the dependence of community detection models on the choice of initial parameters, this paper proposes a novel community detection model——Hierarchical Graph Clustering Network with Probability Distribution, HGCPD. Firstly, utilize graph convolutional networks to learn and cache feature representations of nodes in the graph. Secondly, introduce a hierarchical clustering method based on node pair similarity probability to recursively construct community structures at different levels. Finally, explore the problem of model hyperparameter optimization and design Bayesian optimization methods to automatically adjust parameters, thereby improving the efficiency of the model. Experiments on multiple network datasets of different scales have shown that the HGCPD model is superior to mainstream methods in terms of the accuracy and effectiveness of community detection, and the model""s interpretability has been verified through visualization.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-22
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-20
  • 在线发布日期: 2024-12-28
  • 出版日期:
文章二维码