基于未知非结构化地形在线估计的四足机器人稳定性控制
DOI:
CSTR:
作者:
作者单位:

郑州大学 电气与信息工程学院

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

河南省自然科学基金面上项目(242300421400), 国家自然科学基金面上项目(62173311)


Stability Control of a Quadruped Robot based on Online Estimation of Unknown Unstructured Terrain
Author:
Affiliation:

Zhengzhou University,School of Electrical and Information Engineering

Fund Project:

the National Natural Science Foundation of Henan (242300421400) and the National Natural Science Foundation of China(62173311).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    四足机器人由于其特殊的腿部结构能够适应各种复杂地形, 而现在的基于虚拟模型的 QP(二次规划)算法研究大多未考虑地形信息或考虑不够全面, 在复杂地形下稳定性和精确性受到限制. 本文提出了一种基于机器人本体感知系统估计地形复杂度的方法, 并基于此方法改进了四足机器人控制器, 提升其在非结构化地形下的稳定性. 本文首先利用了四足机器人的本体感知能力、足端运动学以及质心动量反馈设计了一种综合性的地形复杂度估计函数, 将四足机器人的地形评估与动态性能评估结合在一起评价地形复杂度. 然后在四足机器人虚拟模型控制的基础上, 在支撑相加入利用地形复杂度估计函数的外力干扰补偿与支撑力约束, 提升控制算法在支撑相的稳定性, 在摆动相则利用估计函数进行落足点规划并调整步态周期, 提升机器人的动态能力与适应性. 为了验证本文提出方法的有效性, 利用四足机器人 UnitreeA1 仿真模型与 webots 仿真软件设计了一系列实验, 实验结果证明本文提出的方法能有效提高四足机器人在非结构化地形上工作时的稳定性.

    Abstract:

    Quadruped robots can adapt to various complex terrains due to their special leg structures, while most of the current virtual model-based QP (quadratic planning) algorithms do not take terrain information into account or are not comprehensive enough, which limits the stability and accuracy under complex terrains. In this paper, we propose a method to estimate the terrain complexity based on the robot ontology sensing system, and improve the quadruped robot controller based on this method to enhance its stability under unstructured terrain. In this paper, the ontology perception capability, end-effectors kinematics and centre-of-mass momentum feedback of the quadruped robot are firstly utilised to design a comprehensive terrain complexity estimation function, which combines the terrain evaluation of the quadruped robot with the dynamic performance evaluation to evaluate the terrain complexity. Then, on the basis of the virtual model control of the quadruped robot, external disturbance compensation and support force constraints using the terrain complexity estimation function are added in the stance phase to improve the stability of the control algorithm in the support phase, while the estimation function is used in the swing phase for the planning of the landing point and the adjustment of gait cycle to improve the dynamic capability and adaptability of the robot. In order to verify the effectiveness of the method proposed in this paper, a series of experiments are designed using the UnitreeA1 simulation model of the quadruped robot and the webots simulation software, and the experimental results prove that the method proposed in this paper can effectively improve the stability of the quadruped robot when working on unstructured terrain.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-25
  • 最后修改日期:2024-11-04
  • 录用日期:2024-11-05
  • 在线发布日期: 2024-11-21
  • 出版日期:
文章二维码