一种面向压电微动台的增强型鸽群优化分数阶控制策略
CSTR:
作者:
作者单位:

1.复旦大学工程与应用技术研究院;2.西北工业大学民航学院

作者简介:

通讯作者:

中图分类号:

TP273+.2

基金项目:

陕西省自然科学基础研究计划(2023-JC-QN-0733);中国高校产学研创新基金(2022IT188)


An enhanced pigeon swarm optimization-based fractional-order control strategy for piezo micro-motion stage
Author:
Affiliation:

1.Academy for Engineering & Technology, Fudan University;2.Northwestern Polytechnical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对压电微动台的非线性特性以及多轴解耦控制挑战,提出一种基于动态相互学习策略的改进型鸽群优化算法Pigeon-Inspired Optimization(PIO)并提出结合分数阶控制(FOPID)的DMLPIO-FOPID的控制策略进行实验研究。首先,对压电微动台进行力学分析,使其非线性特性近似线性化。然后,根据动态相互学习策略建立动态相反学习种群,以提升鸽群优化算法的寻优性能;引用了一种基于稀疏回归算法的迟滞辨识方法对压电微动台的迟滞逆模型进行补偿,再次,搭建了压电微动实验平台对所设计的控制器进行了实验研究。实验结果表明,DMLPIO-FOPID控制器在四种评价函数的优化测试中性能最佳,平均领先果蝇优化和鸽群优化这两种分数阶控制器19.28%,20.73%。并且在搭建的压电微动台的三轴测试中,均方差最小,收敛时间最短。说明DMLPIO-FOPID控制方法有助于实现压电微动台的精密控制。

    Abstract:

    To tackle the nonlinear characteristics and multi-axis decoupling control challenges of piezoelectric micro-motion stages, we propose a modified pigeon-inspired optimization algorithm (PIO) that incorporates a dynamic mutual learning strategy. Additionally, an experimental study is conducted to integrate fractional order proportional-integral-derivative (FOPID) control with the DMLPIO-FOPID control strategy. Initially, we perform a mechanical analysis of the piezoelectric micro-motion stage to approximate its nonlinear behavior through linearization techniques. Subsequently, a dynamically opposing learning population is established based on the dynamic mutual learning strategy to enhance the optimization efficacy of the pigeon-inspired optimization algorithm. Furthermore, we introduce a delay identification method utilizing sparse regression algorithms to compensate for hysteresis inverting models associated with piezoelectric micro-motion stages. Finally, an experimental platform is developed for testing the designed controller on piezoelectric micro-motion stages. The experimental results demonstrate that the DMLPIO-FOPID controller outperforms four evaluation function optimization tests by an average margin of 19.28% and 20.73% compared to fruit fly optimization and traditional pigeon-inspired optimization strategies respectively. Moreover, it achieves minimal mean square deviation and shortest convergence time during three-axis testing of piezoelectric micro-motion stages, indicating that the DMLPIO-FOPID control approach significantly enhances precision in controlling these systems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2024-10-20
  • 录用日期:2024-10-24
  • 在线发布日期: 2024-11-11
  • 出版日期:
文章二维码