基于Transformer—DRL的机坪特种车群调度策略研究
DOI:
CSTR:
作者:
作者单位:

中国民航大学

作者简介:

通讯作者:

中图分类号:

V351+.3

基金项目:

天津市教委自然科学科研基金项目(2018KJ237)


Research on the scheduling Strategy of special vehicle cluster on apron based on Transformer - DRL
Author:
Affiliation:

Civil Aviation University of China

Fund Project:

Tianjin Education Commission Natural Science Research Fund Project (2018KJ237)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机坪环境下,多种类地面服务车辆的协同调度这一复杂的优化任务,本文提出了一种结合Transformer架构的深度强化学习算法。首先,依据航班地面服务流程的不同优先级,将整个地面服务任务进行分解,进而将原本复杂的多类型车辆调度问题转化为有先后顺序的单类型车辆调度问题。接着,利用Transformer架构对航班和车辆的特征进行自动提取,通过解码器按序列逐步求解任务调度,结合贪婪算法和蒙特卡洛模拟算法分别生成初步调度策略,并将这些策略应用于每个子问题的求解过程中。在此基础上,利用深度强化学习算法对整个模型进行训练,通过智能体与环境的交互来不断优化调度策略。此外,为了提升模型的鲁棒性和应对复杂情况的能力,本文还通过扩充真实数据集进行模型训练。最后,大量的实验证明,基于Transformer架构的深度强化学习方法能够有效避免不同种类车辆之间的相互干扰,并很好地应对真实环境下的航班调度需求。

    Abstract:

    Aiming at the intricate optimization task of collaborative scheduling of multiple types of ground service vehicles in the ramp environment, a deep reinforcement learning algorithm integrated with the Transformer architecture is proposed in this paper. Firstly, in accordance with the varying priorities of the flight ground service process, the entire ground service task is decomposed, and subsequently, the complex multi-type vehicle scheduling issue is transformed into a sequential single-type vehicle scheduling problem. Then, the Transformer architecture is employed to automatically extract the features of flights and vehicles, and the task scheduling is resolved step by step through the decoder. The preliminary scheduling strategies are separately generated by combining the greedy algorithm and the Monte Carlo simulation algorithm, and these strategies are applied to the solution process of each sub-problem. On this basis, the deep reinforcement learning algorithm is utilized to train the entire model, and the scheduling strategy is continuously optimized through the interaction between the agent and the environment. Additionally, to enhance the robustness of the model and its capability to handle complex situations, this paper also trains the model by expanding the real data set. Finally, a considerable number of experiments have demonstrated that the deep reinforcement learning approach based on the Transformer architecture can effectively prevent mutual interference among different types of vehicles and capably cope with flight scheduling requirements in real environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2024-11-08
  • 录用日期:2024-11-10
  • 在线发布日期: 2024-11-27
  • 出版日期:
文章二维码