低碳算法的发展及压缩和加速技术的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(72471165, 72101176).


Development of low carbon algorithms and application of compression and acceleration techniques
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    探讨低碳神经网络算法的设计及其在工业界和大型模型中的应用. 首先, 介绍低碳算法的概念及碳足迹视角下的深度学习算法; 随后, 深入研究多种设计策略, 如剪枝、量化、低秩分解等, 这些策略能显著降低数据中心和网络设备的资源消耗, 推动绿色计算的发展. 此外, 关注了低碳算法的实际应用, 包括低精度计算、高效硬件设计和硬件加速, 展示了其在减少能源浪费和环境影响方面的潜力. 对于大语言模型(LLMs), 讨论了训练过程中的压缩技术、模型结构优化等方法, 以降低这类高资源需求模型的环境负担. 最后, 提出了评判标准来衡量不同算法的效能, 并展望低碳算法未来的发展方向及其对可持续发展的重要意义, 旨在促进低碳算法的研究与应用, 为构建可持续的数字社会贡献力量.

    Abstract:

    This paper explores the design of low-carbon neural network algorithms and their applications in industry and large-scale models, introducing the concept of low-carbon algorithms and the perspective of carbon footprints in deep learning. The paper then discusses various design strategies such as pruning, quantization, and low-rank decomposition, which significantly reduce resource consumption in data centers and network devices, promoting green computing. It also highlights practical applications, including low-precision computation, efficient hardware design, and hardware acceleration, demonstrating their potential to reduce energy waste and environmental impact. For large language models(LLMs), the paper covers compression techniques and model structure optimization to mitigate the environmental burden of these high-resource-demand models. Additionally, it proposes evaluation criteria to measure the efficiency of different algorithms and looks ahead to the future development of low-carbon algorithms and their significance for sustainable development. This work aims to advance the research and application of low-carbon algorithms, contributing to the creation of a sustainable digital society.

    参考文献
    相似文献
    引证文献
引用本文

赵洪科,叶倩彤,张志勇,等.低碳算法的发展及压缩和加速技术的应用[J].控制与决策,2025,40(5):1409-1428

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-15
  • 出版日期: 2025-05-20
文章二维码