基于Conv-Seq2Seq模型的含弹性资源电力系统日前调度方法
CSTR:
作者:
作者单位:

1.合肥工业大学;2.国网安徽省电力有限公司

作者简介:

通讯作者:

中图分类号:

TM721

基金项目:

国家自然科学基金项目;安徽省自然科学基金;安徽省高校协同创新项目


Day-ahead Scheduling Method of Power System with Flexible Resources Based on Conv-Seq2Seq Model
Author:
Affiliation:

1.Hefei University of Technology;2.State Grid Anhui Electric Power Co.

Fund Project:

The National Natural Science Foundation of China; Provincial Natural Science Foundation of Anhui; The University Synergy Inovation Program of Anhui Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对新能源大规模并网带来的消纳问题,提出一种考虑源荷双侧弹性资源的日前调度方法.首先对深度调峰机组、可平移负荷和可削减负荷的弹性调节能力进行分析,建立含弹性资源的电力系统调度模型;然后提出一种基于Conv-Seq2Seq(convolutional sequence to sequence)模型的日前调度方法,使用多层卷积神经网络作为编码器对负荷预测数据等信息进行提取,改进深度学习网络信息提取的能力和速度,并使用门控循环单元作为解码器对编码器提取的信息进行解码,以输出调度计划;最后通过辅助决策修正以确保调度计划的安全性.基于改进的IEEE39节点算例验证了所提方法的有效性和正确性.

    Abstract:

    To solve the challenges of accommodating large-scale renewable energy integration into the power grid, a day-ahead dispatching strategy utilizing flexible resources on both source-side and load-side is proposed. Firstly, the flexible regulation capabilities of deep peak regulation, shiftable loads and reducible loads are analyzed, and a power system dispatching model includes these flexible resources is established. Subsequently, a day-ahead scheduling method based on convolutional sequence to sequence model is proposed. Load forecasting data and other relevant information are extracted through the encoder using multi-layer Convolutional Neural Networks, which enhances the capability and speed of information extraction in deep learning network. The decoder employing a Gated Recurrent Unit decodes the information extracted by the encoder and outputs the scheduling plan. Finally, auxiliary decision correction is applied to refine the outputted dispatching plan to ensure security. The effectiveness and correctness of the proposed method are verified using an improved IEEE 39-bus system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-09
  • 最后修改日期:2024-12-01
  • 录用日期:2024-12-01
  • 在线发布日期: 2024-12-09
  • 出版日期:
文章二维码