基于低密度分数的密度峰值聚类算法
CSTR:
作者:
作者单位:

兰州交通大学

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金(No.62266029);甘肃省高等学校产业支撑计划项目(No.2022CYZC-36);甘肃省重点研发计划项目(No.24YFGA036)


A density peaks clustering algorithm based on low density score
Author:
Affiliation:

Lanzhou Jiaotong University

Fund Project:

National Natural Science Foundation of China (No.62266029); Gansu Higher Education Industry Support Program, China (No.2022CYZC-36);Gansu Key Research And Development Program, China (No.24YFGA036)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    密度峰值聚类算法 (DPC) 可以识别出任意形状的簇,但对于存在多密度峰值的簇,DPC可能会识别多个簇中心点,导致簇划分错误。为此,本文提出一种基于低密度分数的密度峰值聚类算法 (LS-DPC)。该算法首先使用低密度分数放大数据点的密度差异、缩小整体密度差异大的相邻区域的密度差异,使单个簇内所有区域的密度分布都重构为单峰密度分布,然后根据低密度分数自动获得子簇簇中心点。得到子簇后根据密度相交条件对子簇进行融合,完成聚类。将提出的LS-DPC算法与k-Means、SC、DPC、DN、Extreme和ICKDP算法进行对比,实验结果表明算法在复杂数据集和UCI数据集上表现优于对比算法。

    Abstract:

    Density peaks clustering algorithm (DPC) can identify clusters with arbitrary shapes, but for clusters with multiple density peaks, DPC may identify multiple cluster centers, leading to wrong cluster partitioning. In this paper, a density peaks clustering algorithm based on low density score (LS-DPC) is proposed. The algorithm firstly uses low density score to enlarge the density difference of data points and reduce the density difference of adjacent regions with large overall density difference, so that the density distributions of all regions in a single cluster are reconstructed into a single-peak density distribution, and then automatically obtains the center centers of sub-clusters according to the low density score. After the sub-clusters are obtained, the sub-clusters are merged according to the density intersection condition to complete the clustering. The proposed LS-DPC algorithm is compared with k-Means, SC, DPC, DN, Extreme and ICKDP. Experimental results show that the algorithm outperforms the comparison algorithms on complex datasets and UCI datasets.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-13
  • 最后修改日期:2024-10-20
  • 录用日期:2024-10-24
  • 在线发布日期: 2024-11-19
  • 出版日期:
文章二维码