动态事件触发通信下分布式预定时间非光滑约束优化算法
CSTR:
作者:
作者单位:

1.南昌大学;2.西南交通大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金(62303206, 62163026),江西省自然科学基金(20224BAB212019,20224BAB212018,20242BAB25086,20242BAB25090),重庆市自然科学基金(CSTB2024NSCQ-MSX0255),中央高校基本科研业务费项目(2682024CX006)


Distributed non-smooth constrained optimization: A predefined-time and dynamic event-triggered approach
Author:
Affiliation:

1.Nanchang University;2.Southwest Jiaotong University

Fund Project:

National Natural Science Foundation of China(62303206,62163026), Natural Science Foundation of Jiangxi Province(20224BAB212019,20224BAB212018,20242BAB25086,20242BAB25090),Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0255), Fundamental Research Funds for the Central Universities(2682024CX006)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类多智能体系统的非光滑约束优化问题,通过构造合适的时变增益函数和动态事件触发通信机制,提出了一种结构简单的基于动态事件触发的分布式预定时间优化算法. 与现有分布式非光滑约束优化研究工作相比,本文提出的算法主要有以下三点特征: 1) 收敛性能更优: 收敛时间可由设计者提前给定且收敛时间上界与系统初始状态及控制参数无关;2) 通信效率更高: 避免了传统连续时间/周期通信带来的通信资源浪费问题;3) 算法结构更简单: 无需传统的分数幂反馈及额外的辅助变量. 综合运用预定时间收敛理论、惩罚函数法、代数图论及凸优化理论,证明了系统决策变量在预定时间内收敛于最优解的可调邻域内,且不存在Zeno 现象. 仿真验证了我们所提算法的优势及有效性.

    Abstract:

    For a class of non-smooth constrained optimization problem, by constructing appropriate time-varying gain function and dynamic event-triggered communication mechanism, we propose a novel distributed predefined-time and dynamic event-triggered optimization algorithm. Compared with the existing distributed non-smooth optimization works, our proposed algorithm mainly has the following three features: 1) better convergence performance: the convergence time can be pre-set by the user in advance and the upper bound of the convergence time is independent of the initial conditions and the control parameters of the system; 2) higher communication efficiency: avoiding the waste of communication resources in the traditional continuous time/period communication mechanisms; 3) simpler algorithm structure: traditional fractional power feedback and additional auxiliary variables are not required. By leveraging the predefined-time convergence theory, penalty function method, algebraic graph theory and convex optimization theory, we prove that the decision variables of the systems could converge to a tunable neighborhood of the optimal solution in a predefined-time. Moreover, the Zeno phenomenon is also excluded. The effectiveness of the proposed algorithm is verified by some simulations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-15
  • 最后修改日期:2024-12-04
  • 录用日期:2024-12-05
  • 在线发布日期: 2024-12-23
  • 出版日期:
文章二维码