分布式目标位姿跟踪的序列无关融合估计方法
CSTR:
作者:
作者单位:

1.浙江工业大学;2.赛克思液压科技股份有限公司

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

宁波市公益性研究计划重点项目(2023S018)


Sequence-independent fusion estimation method for distributed target pose tracking
Author:
Affiliation:

1.Zhejiang University of Technology;2.The SKS Hydraulic TECHNOLOGY Co., Ltd

Fund Project:

The Ningbo Social Public Welfare Research Key Project under Grant No. 2023S018

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统目标位姿跟踪在处理旋转运动时导致估计精度低和稳定性差的问题,本文提出了一种分布式目标位姿跟踪的序列无关融合估计方法.首先,在矩阵李群上构建状态和不变误差的动态方程,并将系统误差状态转移矩阵与估计状态解耦,更精确地描述和处理旋转运动中的不确定性,提高了滤波器的鲁棒性.其次,考虑到融合序列的随机性,设计了基于李群的序列无关融合策略,使得在任意融合序列条件下均可在李群上进行有效地数据融合,确保了全局估计的一致性.最后,通过仿真和实验验证了所提方法的有效性和优越性.

    Abstract:

    To address the issues of low estimation accuracy and poor stability in traditional target pose tracking when handling rotational motion, this paper proposes a sequence-independent fusion estimation method for distributed target pose tracking. Firstly, the state and invariant error dynamic equations are constructed on matrix Lie groups, and the system error state transition matrix is decoupled from the estimated state. This approach allows for a more precise description and handling of uncertainties in rotational motion, thereby improving the robustness of the filter. Next, considering the randomness of fusion sequences, a sequence-independent fusion strategy based on Lie groups is designed, enabling effective data fusion on Lie groups under any fusion sequence condition and ensuring global estimation consistency. Finally, simulations and experiments are conducted to verify the effectiveness and superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-12-19
  • 录用日期:2024-12-22
  • 在线发布日期: 2025-01-01
  • 出版日期:
文章二维码