基于脉冲强化学习和CPG的四足机器人分层运动控制
DOI:
CSTR:
作者:
作者单位:

1.东华大学;2.北京航空航天大学

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

国家自然科学基金项目(12272092, 12332004)


Hierarchical motion control of quadruped robot based on spiking reinforcement learning and CPG
Author:
Affiliation:

1.Donghua Universality;2.Beihang University

Fund Project:

The National Natural Science Foundation of China (12272092, 12332004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着四足机器人控制技术的逐渐发展,四足机器人已经广泛被应用于救援、军事、探险等领域.在四足机器人的应用中,如何在不牺牲控制性能的前提下有效降低能耗是一个重要的瓶颈问题.为此,本文提出了一种基于脉冲强化学习算法(SpikingReinforcementlearning,SRL)和中枢模式发生器(CentralPatternGenerator,CPG)的分层控制算法(SRL-CPG)用于四足机器人的运动控制.首先,考虑到脉冲神经元相比传统的人工神经元具有更低的能耗,本文基于脉冲神经网络(SpikingNeuralNetwork,SNN)构建脉冲强化学习算法,将其作为控制中枢.其次,在控制任务动作空间过大的情况下,SRL难以取得良好的控制效果,因此本文将CPG作为低级控制器,利用SRL接受状态信息并对CPG参数进行调整进而控制四足机器人运动.最后,SRL-CPG控制算法在本文于Webots环境中搭建的四足机器人模型Gbot上进行了实验验证,结果表明SRL-CPG控制算法能够有效应用于四足机器人的运动控制,并大大降低了能耗.

    Abstract:

    The control technology of quadruped robots has gradually developed, and quadruped robots have been widely applied in fields such as rescue, military, and exploration. In the application of quadruped robots, how to effectively reduce energy consumption without sacrificing control performance is an important bottleneck problem. In response to this problem, this paper proposes a hierarchical control algorithm based on the pulse reinforcement learning algorithm (SRL) and the central pattern generator (CPG). First, considering that spiking neurons have lower energy consumption than traditional artificial neurons, this paper constructs a spiking reinforcement learning algorithm based on a spiking neural network (SNN) and uses it as the control center. Second, when the action space of the control task is too large, it is difficult for SRL to achieve good control effects, the CPG model is used as the low-level controller, and SRL is utilized to accept state information and adjust CPG parameters for controlling the movement of the quadruped robot. Finally, the SRL-CPG control algorithm has been experimentally verified on the quadruped robot model Gbot built in the Webots environment. The results show that the SRL-CPG control algorithm can be effectively applied to the motion control of quadruped robots and significantly reduce energy consumption.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-29
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-04
  • 在线发布日期:
  • 出版日期:
文章二维码