基于改进灰狼算法的冗余机械臂最优轨迹规划
CSTR:
作者:
作者单位:

1.中国汽车技术研究中心有限公司;2.中国科学院长春光学精密机械与物理研究所

作者简介:

通讯作者:

中图分类号:

TP241

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Optimal Trajectory Planning of a Robotic Manipulator Based on the Improved Grey Wolf Optimizer
Author:
Affiliation:

1.China Automotive Technology and Research Center Co., Ltd.;2.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对冗余机械臂时间-冲击最优轨迹规划问题,本文提出了一种基于改进灰狼算法的最优轨迹规划器.首先,为了克服灰狼算法(GWO)开发和探索不平衡的局限性,提出了基于强化学习的灰狼算法(QLGWO)及其多目标版本(MOQLGWO): QLGWO使用Q学习指导灰狼个体基于经验和奖励选择探索或开发动作,实现算法局部和全局搜索的自主平衡; MOQLGWO引入存档和领导选择机制,在搜索衡量多种优化目标的帕累托最优解的同时,引导搜索方向朝未被探索的区域拓展,以逼近全局最优.其次,使用两段五阶多项式构造机械臂的运动轨迹,需要搜索的解由运行时间和中间点的关节位置、速度、加速度组成.最后,在12个基准函数上,将QLGWO与GWO和其他4种先进的元启发式算法对比,并使用MOQLGWO求解九自由度冗余机械臂的时间-冲击最优轨迹规划问题.仿真和实验结果表明,本文提出的QLGWO有效提高了GWO的性能;最优轨迹规划器能在满足关节约束的前提下获得安全、光滑的时间-冲击最优轨迹,其运行时间小于14 s,冲击处于-0.25 rad/s3至0.15 rad/s3之间.

    Abstract:

    This paper introduces an optimal trajectory planner for the time-impact problem of redundant robotic manipulators, utilizing an enhanced grey wolf optimizer. Firstly, to address the limitations of the grey wolf optimizer (GWO) due to imbalanced exploitation and exploration, this paper introduces a reinforcement learning-based GWO (QLGWO) and its multi-objective version (MOQLGWO). In the QLGWO, Q-Learning guides search agents to choose exploration or exploitation actions based on experience and rewards, which is beneficial for achieving autonomous balance between local and global search. In the MOQLGWO, the archive and leadership selection mechanisms are used to search for Pareto optimal solutions that consider multiple optimization objectives. In addition, these mechanisms guide the search direction towards unexplored regions, enabling the algorithm to approach the global optimum. Secondly, two five-order polynomial functions are used to construct motion trajectories. The solution that needs to be searched consists of travelling time and joint positions, velocities, and accelerations at intermediate points. Finally, on 12 benchmark functions, the QLGWO was compared with the GWO and four other state-of-the-art meta-heuristic algorithms. Furthermore, the MOQLGWO was employed to solve the time-impact optimal trajectory planning problem for a nine-degree-of-freedom redundant robotic manipulator. Simulation and experimental results demonstrate that the QLGWO proposed in this study significantly enhances the performance of the GWO; the optimal trajectory planner can achieve a safe and smooth time-impact optimal trajectory, while adhering to joint constraints. The travel time of the searched trajectory is less than 14 seconds, and the impact is between -0.25 rad/s3 and 0.15 rad/s3.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-05
  • 最后修改日期:2024-11-25
  • 录用日期:2024-11-28
  • 在线发布日期: 2025-01-03
  • 出版日期:
文章二维码