基于模糊函数多域特征融合与集成学习的雷达辐射源信号识别
CSTR:
作者:
作者单位:

1. 昆明理工大学 信息工程与自动化学院,昆明 650500;2. 昆明理工大学 计算中心,昆明 650500

作者简介:

通讯作者:

E-mail: puyunwei@126.com.

中图分类号:

TP974

基金项目:

国家自然科学基金项目(61561028).


Radar emitter signal recognition based on ambiguity function multi-domain feature fusion and ensemble learning
Author:
Affiliation:

1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;2. Computer Center,Kunming University of Science and Technology,Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂电磁环境下雷达辐射源信号识别方法中存在的抗噪性能差、识别准确率低等问题,提出一种融合模糊函数多域投影特征的集成深度学习识别方法.首先,对信号的模糊函数进行高斯平滑处理,从多域视角出发选取合适角度对模糊函数进行二维投影以构建特征数据集;然后,构建一种基于多域特征融合的两阶段识别分类方法,使用多个密集连接网络DenseNet121作为初级分类器分别对3类特征数据集进行训练学习,得到初级分类结果;最后,通过Stacking策略对初级分类结果进行融合学习,得到最终类别信息.实验结果表明,所提出方法在信噪比为0dB时对6类典型雷达信号的整体平均识别率均保持在97.24%以上,即使是在-4dB环境中,识别率也稳定在87.16%以上,验证了所提出方法的有效性和可行性,具有一定的工程价值.

    Abstract:

    Aiming at the problems of poor anti-noise performance and low recognition accuracy of the radar emitter signal recognition method in the complex electromagnetic environment. An integrated deep learning recognition method based on multi-domain projection features of ambiguity function is proposed. Firstly, an ambiguity function is processed using a Gaussian operator, and the appropriate angle is selected to carry out two-dimensional projection to build a characteristic data set from the multi-domain perspective. Then, a two-stage recognition and classification method based on multi domain feature fusion is constructed. Multiple dense connected networks DenseNet121 are used as primary classifiers to train and learn the three kinds of feature data sets respectively, and the primary classification results are obtained. Finally, the results of the primary classification are integrated through the Stacking policy to obtain the final classification result. The experimental results show that the overall average recognition rate of the six types of typical radar signals is above 97.24%, when the signal-to-noise ratio is 0dB, even in the -4dB environment, the recognition rate is also stable in 87.16%, which verifies the effectiveness and feasibility of the proposed method, and its certain engineering value.

    参考文献
    相似文献
    引证文献
引用本文

普运伟,余永鹏,姜萤,等.基于模糊函数多域特征融合与集成学习的雷达辐射源信号识别[J].控制与决策,2024,39(1):39-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-14
  • 出版日期: 2024-01-20
文章二维码