基于视觉语义与激光点云交融构建的SLAM算法
CSTR:
作者:
作者单位:

东北大学 信息科学与工程学院,沈阳 110004

作者简介:

通讯作者:

E-mail: tongguofeng@ise.neu.edu.cn.

中图分类号:

TP391

基金项目:

国家重点研发计划项目(2019YFB1309905,2020YFB1712802).


SLAM algorithm based on fusion of visual semantics and laser point cloud
Author:
Affiliation:

College of Information Science and Engineering,Northeastern University,Shenyang 110004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    激光雷达作为同时定位与地图构建(SLAM)传感器之一,因精度高、性能稳定等特点而被广泛研究使用.但其获得的点云数据较稀疏,包含特征信息少,会导致误匹配、位姿估计误差大等问题,影响SLAM的定位和建图精度.对此,提出一种将视觉语义信息与激光点云数据融合的SLAM算法(VSIL-SLAM).首先,基于投影思想将聚类后的点云映射到语义检测框内,生成语义物体,解决原始激光点云特征稀缺问题;然后,在形状特征的基础上引入拓扑特征对语义物体进行表述,提出基于匹配的拓扑相似性度量方法,解决单一特征造成的误匹配问题,提高匹配准确度;最后,加入语义物体点到点的几何约束,基于几何特征和语义物体构建前端里程计,并完成后端回环检测和位姿图优化设计.实验结果表明,所提出算法在定位和建图效果上都有显著提高,改善了激光SLAM算法的性能.

    Abstract:

    Lidar, as one of SLAM(simultaneous localization and mapping) sensors, has been widely studied and used due to its high precision and stable performance. However, the obtained point cloud data is sparse and contains little feature information, which could lead to some problems such as mismatching and pose estimation error, and affect the localization and mapping accuracy of SLAM. In view of the above problems, an SLAM algorithm(VSIL-SLAM) that integrates visual semantic information and laser point cloud data is proposed. Firstly, based on the projection idea, the post-clustering point cloud is mapped to the semantic detection frame to generate semantic objects and solve the problem of scarce features of the original laser point cloud. Then, on the basis of shape features, topological features are introduced to describe semantic objects, and a topological similarity measurement method based on matching is proposed to solve the problem of mismatching caused by single features and improve the matching accuracy. Finally, the front-end odometer is constructed based on geometric features and semantic objects by adding the geometric constraints of semantic objects point-to-point, and the back-end loopback detection and pose map optimization design are completed. Experimental results demonstrate that the proposed algorithm improves the performance of the laser SLAM algorithm in both localization and mapping.

    参考文献
    相似文献
    引证文献
引用本文

佟国峰,杨宇航,彭浩,等.基于视觉语义与激光点云交融构建的SLAM算法[J].控制与决策,2024,39(1):103-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-14
  • 出版日期: 2024-01-20
文章二维码