考虑工人路径的多智能体强化学习空间众包任务分配方法
CSTR:
作者:
作者单位:

四川大学 商学院,成都 610065

作者简介:

通讯作者:

E-mail: zhibinwu@scu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金面上项目(71971148);中央高校基本科研业务费专项资金项目(SXYPY202103).


A multi-agent reinforcement learning algorithm for spatial crowdsourcing task assignments considering workers' path
Author:
Affiliation:

Business School,Sichuan University,Chengdu 610065,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工人和任务进行匹配是空间众包研究的核心问题之一,但已有的方法通常会忽略工人路径对任务分配结果产生的影响.传统的任务分配方法存在计算速度慢、适用范围小和协作效果不突出等问题.对此,从空间众包平台的角度出发研究面向路网的空间众包任务分配问题,以任务完成时间最短为目标,提出考虑工人路径规划的基于多智能体强化学习的QMIX-A*算法,缩短任务的平均完成时间,进而提高用户的满意度.大量的数值仿真研究验证了QMIX-A*的有效性和稳定性,为空间众包服务平台的任务分配与路径优化策略的选择提供决策支持.

    Abstract:

    Matching tasks and workers is one of the core problems in spatial crowdsourcing research, but the impact of path planning of workers on task allocation results is usually ignored in the existing literature. There are problems with traditional task assignment methods including slow computing speed, small application scope, and unremarkable collaboration effect. From the perspective of a spatial crowdsourcing platform, this research is oriented toward the spatial crowdsourcing task assignment problem on the road networks and puts forward a QMIX-A* algorithm based on multi-agent reinforcement learning considering workers' path planning. The proposed approach with the minimum completion time of tasks as the objective can shorten the tasks' average completion time, thereby improving users' satisfaction. The effectiveness and stability of the QMIX-A* are verified by a large number of simulation studies. The results of the research can provide decision support for the task allocation and path optimization strategy selection of spatial crowdsourcing service platforms.

    参考文献
    相似文献
    引证文献
引用本文

纪苗苗,吴志彬.考虑工人路径的多智能体强化学习空间众包任务分配方法[J].控制与决策,2024,39(1):319-326

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-14
  • 出版日期: 2024-01-20
文章二维码