sigma优劣关系熵及其在多属性决策的应用
CSTR:
作者:
作者单位:

1. 华侨大学 数学科学学院,福建 泉州 362021;2. 闽南师范大学 数学与统计学院,福建 漳州 363000

作者简介:

通讯作者:

E-mail: hqufuzzy@163.com.

中图分类号:

TP301

基金项目:

国家自然科学基金项目(12271191,11871259);福建省自然科学基金项目(2017J01114,2022J01306);华侨大学高层次人才项目(16BS814).


sigma superior-inferior relation entropy and its application in multi-attribute decision making
Author:
Affiliation:

1. College of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China;2. College of Mathematics and Statistics, Minnan Normal University,Zhangzhou 363000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前大多数的模糊关系熵是由一般的模糊二元关系构造,无法有效地对具有优劣顺序的模糊关系族进行评估,这限制了它们在多属性决策的应用.为此,提出一种新的优劣关系熵.首先,研究一种参数化的模糊优劣关系用于表征样本间的差异,进而探讨几种sigma优劣关系的模糊类;然后,在此基础上提出一种新的sigma优劣关系熵,并介绍其一些衍生熵,如sigma优劣关系条件熵、sigma优劣关系联合熵和sigma优劣关系互信息,探讨它们间的关系以及一些重要性质;最后,给出2种基于sigma优劣关系熵的多属性决策方法,并通过数据实例验证所提出方法的有效性和可行性.比较和敏感性分析表明,所提出方法与一些经典多属性决策方法的排序结果具有高度一致性.特别地,在多专家评判环境下,所提出方法具有更广泛的适用性.

    Abstract:

    At present, most fuzzy relation entropies are constructed by means of general fuzzy binary relations, which cannot effectively evaluate the fuzzy relation families with order attributes. This limits their application in multi-attribute decision-making. For this reason, a new superior-inferior relationship entropy is presented in this paper. First, a parameterized fuzzy superior-inferior relation is studied to characterize the differences between samples, and some fuzzy classes are then proposed with sigma superior-inferior relation. On this basis, a new sigma superior-inferior relation entropy are proposed, and some of its derived entropy, such as sigma superior-inferior relation conditional entropy, sigma superior-inferior relation joint entropy and sigma superior-inferior relation mutual information, are then introduced. We discuss the relationship between them and some important properties are explored. Finally, two multi-attribute decision-making methods with sigma superior-inferior relation entropy are developed, and the effectiveness and feasibility of the presented method are verified by data examples. Comparison and sensitivity analysis show that the ranking results of the proposed model and some classical methods are highly consistent. In particular, the proposed method has wider applicability in the multiple expert evaluation environment.

    参考文献
    相似文献
    引证文献
引用本文

吴家明,黄哲煌,李进金,等. sigma优劣关系熵及其在多属性决策的应用[J].控制与决策,2024,39(2):613-624

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期: 2024-02-20
文章二维码