无锚双注意力孪生网络的视觉跟踪
CSTR:
作者:
作者单位:

1. 山东工商学院 计算机科学与技术学院,山东 烟台 264005;2. 山东工商学院 信息与电子工程学院,山东 烟台 264005

作者简介:

通讯作者:

E-mail: dingxinmiao@126.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(62072286,61876100,61572296);山东省研究生教育创新计划项目(SDYAL21211).


Dual attention Siamese network with anchor free for visual tracking
Author:
Affiliation:

1. School of Computer Science and Technology,Shandong Technology and Business University,Yantai 264005,China;2. School of Information and Electronic Engineering,Shandong Technology and Business University,Yantai 264005,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对跟踪过程中因光照变化、快速运动及尺度变化等造成的角点定位精准度下降问题,受SiamCAR的跟踪框架启发提出一种无锚双注意力孪生网络的视觉跟踪算法.首先,算法的主干网络采用ResNet-50并结合增强多层融合特征图进行特征提取,充分利用网络浅层特征的定位信息和深层次的语义信息,提高算法对目标特征的语义理解能力;然后,构建混合注意力模块缓解无锚跟踪器角点定位不准确问题,提高算法的跟踪准确性和定位精度;最后,在GOT10K、UAV123、LaSOT等数据集上进行广泛实验,并与当前的先进跟踪器进行比较,该算法可以较好地抵抗光照变化、快速运动及尺度变化等多种复杂因素带来的影响,同时,在多项评测指标上获得了良好的跟踪性能.

    Abstract:

    Aiming at the problem of decreased corner positioning accuracy caused by light changes, fast motion and scale changes in the tracking process, we propose a visual tracking algorithm motivated by the framework of SiamCAR. Firstly, the research method uses improved ResNet-50 as a feature extraction backbone network and combines with enhanced multi-layer fusion feature map to extract feature, which makes full use of the location information of shallow features and deep semantic information of the network, and improves the semantic understanding ability of the algorithm to target features. Secondly, a hybrid attention block is constructed to alleviate the inaccurate corner location of the anchor tracker, which improves the tracking accuracy and positioning accuracy of the algorithm. Finally, extensive experiments are carried out on GOT10K, UAV123, LaSOT and other datasets. Besides, compared with current advanced trackers, the proposed algorithm can better resist the influence of various complex factors such as illumination variation, rapid motion and scale variation, at the same time, obtain good tracking performance on a number of evaluation indicators.

    参考文献
    相似文献
    引证文献
引用本文

郭文,梁卜文,丁昕苗.无锚双注意力孪生网络的视觉跟踪[J].控制与决策,2024,39(2):633-640

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期: 2024-02-20
文章二维码