基于高基尼不纯度的UAV&UGV协作监测系统路径规划
CSTR:
作者:
作者单位:

1. 武汉科技大学 机器人与智能系统研究院,武汉 430081;2. 武汉科技大学 冶金自动化与检测技术教育部工程研究中心,武汉 430081

作者简介:

通讯作者:

E-mail: chenyag@wust.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62173262,62073250).


Path planning of unmanned aerial vehicle & unmanned ground vehicle collaborative monitoring system based on high Gini impurity
Author:
Affiliation:

1. Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,Wuhan 430081,China;2. Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    空地异构机器人系统由无人机和地面车组成,通过两者相互协作完成持续监测任务可以提高工作效率、解决无人机续航能力不足的问题.在该异构机器人系统中,地面车可以为无人机进行补能,保证监测任务的持续性.由于周期性的监测路径极易发生监测规律信息的泄露,提高无人机监测路径的随机性具有重要意义.针对此问题,引入基尼不纯度指标来评估监测路径的随机性,以目标点的归一化访问间隔时间及其基尼不纯度的加权之和最小为优化目标,建立无人机和地面车协作系统持续监测路径规划模型,提升监测路径的隐私性.采用蚁群算法对无人机监测路径和地面车补能路径进行优化求解,验证了模型的有效性与合理性.通过与其他算法比较,说明了蚁群算法具有更快的搜索速度和运行效率.

    Abstract:

    A heterogeneous robot system is composed of an unmanned aerial vehicle(UAV) and an unmanned ground vehicle(UGV). By cooperating with each other to complete continuous monitoring tasks, the work efficiency can be improved and the problem of insufficient endurance capacity of the UAV can be solved. In this heterogeneous robot system, the UGV can recharge energy for the UAV to ensure the continuity of the monitoring task. Since periodic monitoring paths are prone to leakage of monitoring regularity information, it is significant to improve the randomness of the UAV's monitoring path. Aiming at this problem, this paper introduces the Gini impurity index to evaluate the randomness of the monitoring path. With the optimization goal of minimizing the weighted sum of normalized visit interval time of target nodes and their Gini impurity, a continuous monitoring path planning model of the UAV&UGV cooperative system is established,which improves the privacy of monitoring path. Finally, the ant colony algorithm is used to optimize the UAV's monitoring path and the UGV's energy supply path, which verifies the validity and rationality of the model. Compared with other algorithms, it is proved that the ant colony algorithm has faster search speed and operation efficiency.

    参考文献
    相似文献
    引证文献
引用本文

夏丹,陈洋,陈志环,等.基于高基尼不纯度的UAV&UGV协作监测系统路径规划[J].控制与决策,2024,39(3):804-812

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-25
  • 出版日期: 2024-03-20
文章二维码